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Abstract
Human aging is associated with progressive decline in immune functions, increased frequency of
infections. Among immune functions, a decline in T cell functions during aging predominates. In this
review, we will discuss the molecular signaling in two major pathways of apoptosis, namely death
receptor pathway and mitochondrial pathway, and their alterations in both T and B lymphocytes in
human aging with a special emphasis on naïve and different memory subsets of CD8+ T cells. We
will also discuss a possible role of lymphocyte apoptosis in immune senescence.

Introduction
Apoptosis is a physiological form of cell death, which
plays an important role in embryogenesis, metamorpho-
sis, cellular homeostasis, tissue atrophy and removal of
tumor and mutated cells. In the immune system, apopto-
sis appears to play a crucial role in selection of T cell rep-
ertoire in the thymus, deletion of self-reactive T
lymphocytes and B lymphocytes, regulation of immuno-
logical memory, deletion of effector T cells following an
effective immune response, and in the cytotoxicity of tar-
get cells by CD8+ T cells and natural killer cells [1-3].
There are two major signaling pathways of apoptosis (Fig-
ure 1), the death receptor pathway (extrinsic pathway)
and intrinsic pathway the mitochondrial pathway [4-11].
The apoptosis via both pathways is mediated by the acti-
vation of a series of cysteine proteases, the caspases. Cas-
pases act as molecular chainsaw, which cleave a number
of cytoplasmic and nuclear substrates to induce character-

istic of apoptosis. Although both pathways of apoptosis
involve activation of common effector or executioner cas-
pases, they differ in the activation of apical or initiator cas-
pases. Caspases are present in inactive form as prozymes.
Apical caspases are autolytically activated by homodimer-
ization without undergoing cleavage, whereas executioner
caspases are activated via cleavage of their prodomain by
apical caspases. Both pathways also recruit different adap-
tor molecules. In this article we will review differential
sensitivity of various T lymphocyte subpopulations to
apoptosis and their changes during aging and the role of
subsets of T cells that are sensitive or resistant to apoptosis
in immune senescence. A role of apoptosis in B lym-
phocytes in aging will also be briefly discussed.

Death Receptor Pathway of Apoptosis
Death receptors belong to a large family of tumor necrosis
factor receptors (TNFRs) and nerve growth factor
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receptors (NGFRs). Following interaction with death
receptor ligand the cytoplasmic death domain (DD) of
death receptor undergo trimerization, which leads to
recruitment of a set of adaptor proteins and proximal cas-
pase to form a death-inducing signaling complex (DISC).
DISC serves as a platform for the activation of down-
stream caspases and apoptosis. In the DISC, initiator cas-
pases undergo activation by homodimerization and
without cleavage. Activated initiator caspases cleave effec-

tor caspases, which cleaves a number of cytoplasmic and
nuclear substrates to induce apoptosis. We will discuss
three distinct forms of death receptor-mediated apoptosis,
which have been studied in human aging.

Activation-induced cell death
The activation-induced cell death (AICD), in which acti-
vation of T cells occurs through proper engagement of T
cell receptors (TCRs) by specific antigen bound to MHC

Two distinct pathways of apoptosisFigure 1
Two distinct pathways of apoptosis. Death receptor pathway and mitochondrial pathway use distinct initiator caspases but 
common effector caspases. Death receptor and mitochondrial pathways are linked via Bcl-2 family protein Bid.
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molecule and influenced by antigen concentration, and
co-stimulatory signals. AICD plays an essential role in
both central and peripheral deletion (clonal deletion)
events involved in tolerance and homeostasis [12]. The
AICD appears to be mediated primarily by an interaction
between CD95 and CD95L [13-15]. In the AICD, cells are
initially activated by anti-CD3 for 5 days and then re-stim-
ulated with anti-CD3 to induce apoptosis, whereas in
CD95-mediated apoptosis cells are first activated with
anti-CD3 and cultured in IL-2 containing medium fol-
lowed activation with anti-CD95 antibody or CD95L to
induce apoptosis. AICD occurs only in the cells of the
immune system, whereas CD95-mediated apoptosis may
occur in any cell type. CD95-CD95L interaction is essen-
tial for AICD in mature T cells in vitro [16,17] and in vivo
for peripheral T cell deletion [18,19].

CD95-mediated apoptosis
CD95 is a member of type I transmembrane receptors that
is constitutively expressed on lymphocytes; however,
CD95L, a type II transmembrane protein is lacking from
resting lymphocytes and is transcrptionally regulated and
induced upon activation of lymphocytes. The steps of
CD95-mediated apoptosis signaling pathway are shown
in Figure 2. Upon ligation with soluble CD95L or anti-
CD95 monoclonal antibodies CD95 undergoes trimeriza-
tion. Cytoplasmic DD of CD95 recruits an adapter pro-
tein, the fas-associated death domain (FADD), which
contain a death effector domain (DED). FADD then
recruits and through homologous and protein-protein
interaction binds to procaspse-8 (Flice) to form a death-
inducing signaling complex (DISC), which serves as a
platform to initiate enzymatic activation of apoptotic
pathway. Procaspase-8 is autolytically activated by hom-
dimerization to generate active caspase-8, which is
released from the DISC into the cytoplasm where it
cleaves effector caspases (caspase-3, caspase-6, caspase-7)
to generate active effector caspases. Active effector cas-
pases in turn cleave a number of substrates to elicit char-
acteristic morphological and biochemical features of
apoptosis. This classical pathway occurs in so called type I
cells [20]. In type II cells, procaspases-8 levels are very low
and therefore caspase cascade is amplified via mitochon-
drial pathway. Caspase-8 cleaves the Bid, a Bcl-2 family
member, to produce a truncated form of Bid (tBid), which
then translocates from the cytoplasm to the mitochondria
and exerts is proapoptotic effect by inhibiting Bcl-2/Bcl-xL
resulting in the release of cytochrome c, activation of inti-
ator caspase-9 and then of effector caspases resulting in
apoptosis [21].

TNFR-mediated Apoptosis
TNF-α is a plieotropic cytokine, which exerts its biological
activity by binding to both type I and type II receptors
(TNFR-I and TNFR-II) and activating several signaling

pathways [2-7,22-25]. TNFRs belong to a family of
TNFRs/NGFRs [26]. Both TNFRs receptors contain one to
five cysteine-rich repeats in their extracellular domains;
however differ in their cytoplasmic domain. TNFR-1 con-
tains DD whereas TNFR-2 lacks DD. Therefore, TNFR-I
signals both cell survival and cell death signals; whereas
TNFR-II primarily mediates primarily a cell survival sig-
nals. However, recent data suggest that TNFR-II may also
participate in apoptosis and may potentiate death signal
mediated by TNFR-I. Both cell survival and cell death sig-
nals mediated by TNFRs require distinct sets of adapter
and other downstream signaling molecules.

Steps of TNFR-mediated signaling are shown in Figure 3.
TNFR-I undergo trimerization of its receptor death
domains, which in turn recruit an adaptor protein, TNFR-
associated death domain (TRADD). TRADD then may
recruit another adapter molecule, the Fas-associated death
domain (FADD). FADD then recruits procaspase-8, which
is autolytically activated and then induces apoptosis via
activation of effector caspases. TRADD may recruit distinct
sets of adapter proteins, TRAF-2 (TNF-R-associated factor-
2) and receptor interactive protein (RIP). TRAF-2 and RIP
stimulate pathways leading to activation NFκB. Studies in
mice and humans have shown that NF-κB is a repressor of
apoptosis [27-31]. However, until recently it was unclear
how NF-κB activation by TNF-α could inhibit initiator
caspase activation through the same receptor (TNFR-I).

Recently, Jurg Tschopp's group has proposed a two com-
plex model based upon their experimental findings that
TNFR-I signaling involve assembly of two distinct com-
plexes that sequentially activate NF-κB and caspases [32].
In this model, the binding of TNF to TNFR-I results in the
formation (within minutes) of signaling complex I. This
complex contains TNFR-I, TRADD, RIP, and TRAF-2. Sig-
naling complex I leads to activation of NF-κB via recruit-
ment of (IκB kinase) IKK complex and phosphorylation
of IκB. The secondary complex is form possibly following
TNFR-I internalization (>2 hours following interaction
between TNF and TNFR-I) in which TRADD, RIP, and
TRAF-2 dissociate from the receptor and recruits FADD
and caspase-8 (complex II). In conditions of complex I
signaling, which leads to strong NF-κB activation, gene
expression of anti-apoptotic proteins is induced and the
activation of initiator caspases in complex II is inhibited.
In contrast, when complex I signaling results in weak or
deficient NF-κB activation, the products of anti-apoptotic
gene are not made, and complex II can signal apoptosis
via activation of caspases.

A family of TRAFs functions as adaptor molecules for
TNFR superfamily members by associating with the intra-
cellular domain of these proteins and subsequently medi-
ating downstream signaling events such as activation of
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NF-κB. TRAF2 is recruited to TNFR-I signal complex via
TRADD and plays a positive role in canonical pathway
that activates NF-κB through IKKβ. TRAF2 homodimers as
well as TRAF1:TRAF2 heterodimers can associate with
TNFR-II that is required for signaling and NF-kB activa-
tion [33] TRAF2 also plays a role in TNF-induced activa-
tion of JNK via MEKK1 [34]. TRAF2 also ubiquitinates RIP
at K63 (without proteasomal degradation) to activate NF-
κB. Unlike TNFR-I, TNFR-II binds TRAF2 directly, hence
activates IKK and JNK (TRAF-2 is also involved in TNFR-
II-mediated activation of NF-κB). TRAF-2 also recruits
ancilliary proteins (cIAP1, cIAP2, TRAF1, A20) that
modulate signaling though each TNFRs and inhibit apop-
tosis. cIAP-TRAF2 complex inhibits caspases-8 activation
by an unknown mechanism. Simultaneous engagement
of both TNFR-I and TNFR-II amplifies TNF-induced apop-

tosis [35,36]. This correlates with increased TNFR-II-
induced degradation of TRAF2. Since TRAF2 recruits cIAPs
to TNFR-I, its degradation by TNFR-II may facilitate apop-
tosis by dissociation of cIAP from TRAF-2-cIAP complex
and therefore allowing activation of caspase-8. In addi-
tion, TRAF2 degradation may also attenuate TNFR-I-medi-
ated activation of NF-κB and promote apoptosis.

Receptor-interactive protein (RIP) is serine/threonine
kinase, which is a component of TNFR-I signaling
complex and is required for TNFR-I-mediated NF-κB acti-
vation [37-39]. RIP contains three domains, including an
N-terminal kinase domain, an intermediate domain
(which interact with the RING finger domain of TRAF-2)
and an N-terminal DD. RIP interacts with TRADD
through their respective DDs via protein-protein

CD95-mediated ApoptosisFigure 2
CD95-mediated Apoptosis. CD95 upon ligation with CD95 ligand (CD95L) undergo trimerization resulting in the recruitment 
of fas-associated death domain (FADD) and procaspase-8 to form death-inducing signaling complex (DISC). Procaspase-8 is 
autolytically activated by homodimerization and released from the DISC into the cytosol, where it cleaves and activate effector 
caspases to induce apoptosis.
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interaction. RIP family consist of five members, including
RIP2, RIP3, RIP4, and recently described RIP5 [40-44]. All
RIP kinases share significant similarities in their N-termi-
nus kinase domain, but differ in their C-terminus domain.
RIP, RIP2 and RIP4 are involved in the activation of NF-
κB (42–44); RIP4 is also involved in JNK activation.
Recently, it has been reported that RIP3 and RP5 are
involved in TNFα-induced apoptosis [40,42]. RIP3 exerts
its pro-apoptotic activity by activating caspases and/or by
inhibiting RIP- and TNFR-1-induced NF-κB activation.

NF-κB mediates its repressor effect on apoptosis by induc-
ing the expression of a number of anti-apoptotic genes

including cIAPs, FLIP, TRAF-1, TRAF-2, Bcl-2, and Bcl-xL
[30,31,45].

Inhibitor of apoptosis protein (IAP) family proteins, orig-
inally identified in the genome of baculovirus, has a key
role in the negative regulation of apoptosis [46,47]. The
cIAP-1 and cIAP2, two structurally homologous proteins,
belong to a family of death inhibitors sharing a motif
found in a Baculovirus inhibitor of death. cIAP1 and
cIAP2 were initially isolated by their interaction with
TRAF-1 and TRAF-2 in the TNF-RII complex. cIAP1 is also
recruited to the DISK of TNF-RI by TRAF-2. In addition to
cIAP1 and cIAP2, XIAP have a conserved COOH-terminal

TNFR-mediated apoptosisFigure 3
TNFR-mediated apoptosis. TNFR-I upon interaction with TNF-α undergo trimerization and recruitment of TNFR-associated 
death domain (TRADD), TNFR-associated factor 2 (TRAF-2) and receptor-interacting protein (RIP) to form complex I. This 
complex activates NF-κB via phosphorylation of IKK and IκB. NF-κB inhibits apoptosis by inducing a number of ant-apoptotic 
molecules (Bcl-xL, cIAPs, FLIP, Gadd45β, A20). After internalization of TNFR-I, TRADD, TRAF 2, and RIP are dissociated from 
the complex and FADD and caspase-8 are recruited (Complex II) to induce apoptosis. TRAF2 also activate JNK and sustanin 
activation of JNK induces apoptosis via selective release of Smac from the mitochondria.
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RING finger, zinc-binding domain [48]. Overexpression
of these mammalian IAPs confers resistance to apoptosis.
These proteins suppress apoptosis by preventing the acti-
vation of procaspases and inhibiting directly the enzyme
activity of mature caspases. XIAP is a potent, active site-
directed inhibitor of the effector caspases-3. In addition,
TRAF-2-IAP complex inhibits caspases-8 activation by an
unknown mechanism.

A20, a ring finger protein, was initially characterized as an
inhibitor of TNF-α-induced apoptosis [49]. A20 is pecu-
liar because it has dual activity in that it inhibits apoptosis
as well as NF-κB activation [50]. These activities of A20 are
cell type specific. A20 inhibits NF-κB activation by both
deubiquitination (of K63 ubiquitination of RIP) and sub-
sequent K48 ubiquitination for S26 proteasomal degrada-
tion of RIP. The fact that the expression of A20 is itself
under control of NF-κB suggests that A20 is involved in
the negative feed-back regulation of NF-κB activation. In
contrast, A20 inhibits apoptosis, at least partially, by
binding to TXBP151, which inhibits TNF-α-induced
apoptosis. Furthermore, A20 and cIAP interact with a
common region in TRAF2 [51]. Therefore, it is possible
that A20 releases cIAP from the TRAF2-signaling complex,
thereby allowing these proteins to exert their anti-apop-
totic effects. Anti-apoptotic activity of A20 is restricted to
certain cell type and is associated with decreased activa-
tion of caspases-3.

cFLIP is one of the apoptosis regulatory molecules that is
induced by NF-κB [52]. FLIP comes in two spliced forms,
the c-FLIPL and c-FLIPs. c-FLIPs contains two tandem
repeat death effector domains (DED) and inhibits procas-
pase activation in the DISC. In contrast, c-FLIPL shares
extensively homology with procaspase-8 yet it is enzymat-
ically inactive [53]. In addition to its inhibitory effect on
procaspase-8 activation, c-FLIP associates with Raf-1,
which activates MEK1 to activate ERK, and with TRAF1
and TRAF2, which lead to NF-κB activation [54].

MAPK may inhibit [55] or promote apoptosis [56] via
transient (inhibits apoptosis) or sustained (promotes
apoptosis) activation of Janus-like kinase (JNK). Recently,
a role of JNK in TNF-induced apoptosis has been explored
[57]. JNK activation is required for TNF-induced apopto-
sis. Deng et al [58] demonstrated that TNF-α-induces
apoptosis via sustained activation of JNK, which cleaves
Bid, in a caspases-8-independent manner, to yield a
unique 21kDa Bid cleaved product (jBid), which is differ-
ent from caspases-8-dependent cleaved Bid (tBid) of
15kDa. jBid translocates to the mitochondria and prefer-
entially releases Smac/Diablo from the mitochondria,
which may disrupt TRAF-2-cIAP1 complex formation and
its inhibition on caspases-8 activation. In addition Smac
inhibits anti-apoptotic effects of cIAP and XIAP by bind-

ing it to them. De Smaele et al [59] identified GADD45β
as an inhibitor of JNK activation and inhibitor of TNF-α-
induced apoptosis. However, gadd45β is the only gene in
this family that appears to be regulated by NF-κB and its
ectopic expression completely suppresses TNF-α-induced
apoptosis. This provides another mechanism via which
NF-κB inhibits apoptosis.

Unlike TNF-RI, TNF-RII lack a cytoplasmic DD, instead
interaction between TNF-α and TNF-RII results in binding
of TRAF1 and TRAF2 to the cytoplasmic portion of TNF-
RII. This then recruits the cellular inhibitor of apoptosis
proteins cIAP-1 and cIAP-2 [46,51]. However, it has been
reported that TNF-RII may also play an important role in
the regulation of apoptosis through TNF-RI. Several inves-
tigators have reported that TNF-RII potentiates TNF-α-
induced apoptosis [60-64] and proposed a number of
mechanisms to explain this observation, including TNF-
RII serving as high affinity trap of TNF-α that delivers TNF-
α to TNF-RI [65], and direct induction or potentiation of
apoptosis by the cytoplasmic domain of TNFR II [62,66].

Mitochondrial Pathway of Apoptosis
Several recent publications have reviewed the subject of
mitochondrial pathway of apoptosis [7-11,67]. A number
of stimuli, including chemotherapeutic agents, UV radia-
tion, stress molecules (reactive oxygen and reactive nitro-
gen species) and growth factor withdrawal may mediate
apoptosis via mitochondrial pathway In certain cell type
mitochondrial pathway may provide an amplifying mech-
anism for death receptor-mediated apoptosis. Mitochon-
dria contain two well-defined compartments: the matrix,
surrounded by the inner membrane (IM), and the inter-
membrane space, which is surrounded by the outer mem-
brane (OM). The IM contains various molecules,
including ATP synthase, electron transport chain, and ade-
nine nucleotide translocator (ANT). Under physiological
conditions these molecules allow the respiratory chain to
create an electrochemical gradient (membrane potential).
The OM contains a voltage-dependent anion channel
(VDAC). Bcl-2 is located on the IM and appears to play an
important role in the maintenance of mitochondrial
membrane potential (∆Ψm). The intermembrane space
contains holocytochrome c, certain pro-caspases, ade-
nylate kinase 2, Endo G, Daiblo/Smac, and apoptosis-
inducing factor (AIF). The permeabilization of the OM,
therefore, results in the release of these molecules into the
cytoplasm. IM permeabilization leads to changes in ∆Ψm.
Once released from the mitochondria, cytochrome c
binds to an adapter molecule Apaf-1 (Apoptotic protease-
activating factor) in the presence of ATP/dATP and recruits
pro-caspase 9 for form apoptosome (Fig. 4). Procaspase-9
is dimerized and activated without undergoing cleavage,
and active caspases-9 activates executioner caspases to
orchestrate apoptosis.
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A number of molecules present in the mitochondrial
intermembrane space can promote apoptosis in caspases-
independent manner. Htra2/Omi, in addition to its abil-
ity to block IAPs, appears to promote caspases-independ-
ent apoptosis via its serine protease activity [68,69].
Apoptosis inducing factor (AIF) is a caspases-independent
death effector, which upon induction of apoptosis trans-
locates from intermembrane space of the mitochondria to
the nucleus where it AIF causes chromatin condensation
and large scale DNA fragmentation [70,71]. Endo G, upon
its release from mitochondrial intermembrane space,
appears to directly mediate nuclear DNA fragmentation in
a caspase-independent manner [72].

The mitochondrial membrane permeabilization (MMP)
is controlled by a variety of members of the Bcl-2 family
[7-11,73]. The Bcl-2 family members are divided into
three groups: anti-apoptotic (Bcl-2, Bcl-xL, Mcl-1, Bcl-w,
and A1), pro-apoptotic "BH3 only" (Bid, Bim, Bik, Bmf,
Bad, Hrk, BNIP3) and pro-apoptotic "BH-123" (Bax, Bak,
and Bok) proteins.

Several of the pro-apoptotic members of the Bcl-2 family,
including Bax, Bak, Bad, Bid, and Bim, initiate MMP by
forming what appears to be a channel. In order to influ-
ence their effects, the members of Bcl-2 pro-apoptotic
family must dock onto the mitochondrial OM. During

Mitochondrial pathway of apoptosisFigure 4
Mitochondrial pathway of apoptosis. See text for details.
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apoptosis Bax, which is present in the cytoplasm in a
monomer form, is translocated to the mitochondrial
membrane to form a dimer or high order oligomers. Bak
can also loosely associate with OM. Bim, present in micro-
tubules, also translocates to OM during apoptosis. Bim is
a calcium-dependent proapoptotic molecule. Bcl-2 and
Bcl-xL inhibit cytochrome C release. The phosphorylation
of members of the Bcl-2 family rendered them inactive. In
response to genotoxic agents, the stress-activated protein
kinase (SAPK, also termed c-jun amino-terminal kinase or
JNK) translocates to mitochondria and phosphorylates
Bcl-xL, leading to Bcl-xL inactivation and induction of
apoptosis.

Apoptosis in T Lymphocytes in Aging
Apoptosis in lymphocytes in aged humans has been stud-
ied primarily via death receptor signaling. Recently we
(manuscript submitted) and others [74] have also studied
apoptosis in human B lymphocytes.

Death receptor-induced apoptosis in CD4+ and CD8+ T 
cells in aging
During human aging (in contrast to mice) there is a pro-
gressive T cell lymphopenia, which is shared by both
CD4+ and CD8+ T cells [75,76]. Although there has been
controversy regarding lymphopenia in aging, our studies
were performed in aged subjects from middle class social
status, each of them own his/her house, living independ-
ently, and were asked to discontinue any anti-oxidants
they might be taking for at least one week prior to the
study (75). Therefore, our population of seniors does not
have any nutritional or extrinsic factors and changes in
lymphocyte counts and T cell subsets appear to reflect true
changes of aging. Furthermore, many of our subjects were
tested on two to three separate occasions. Although the
precise mechanism of lymphopenia in aging is unclear, it
is likely that decreased bone marrow precursors,
decreased thymic output, reduced proliferative potentials
and/or increased apoptosis, may contribute to T cell lym-
phopenia during human aging.

Activation-induced cell death (AICD) and CD95-mediated 
apoptosis in CD4+ and CD8+ T cells in aging
Apoptosis of T cells is increased during human aging [77-
88]. Phelouzat et al [84,85] and Lechner et al [86]
reported that T cells from aged individuals undergo
increased AICD as compared to cells from young subjects
and increased apoptosis was associated with increased
expression of CD95. Potestio et al [87] reported increased
spontaneous and AICD in T cells from aged humans and
a correlation between increased spontaneous apoptosis
and increased CD95 expression; however, we have
observed better correlation between spontaneous apopto-
sis and CD95L expression rather than with CD95 expres-
sion [89].

In our study, using different methods to detect apoptosis
including propidium iodide and TUNEL assay, Hoechst
33342 staining, and DNA fragmentation by gel
electrophoresis, we observed that both CD4+ and CD8+ T
cells from aged healthy subjects were more sensitive to
anti-CD95-induced apoptosis as compared to young
healthy control [77]. Increased apoptosis was associated
with increased expression (at protein level) and increased
and early activation of both caspase-8 and caspase-3 [90].
Furthermore, both CD4+ and CD8+ T lymphocytes from
aged humans display increased expression of CD95 and
CD95L. In addition, we observed higher apoptosis in
CD4+ T cells as compared to CD8+ T cells. Zeng et al [91]
have also observed preferential anti-CD95-induced death
of CD4+ T cells.

TNFR-mediated apoptosis in CD4+ and CD8+ T cells
During aging, TNF-α production is increased [92-98]. We
showed that both CD4 and CD8 cells from the elderly
were more susceptible to TNF-α-induced apoptosis as
compared to young subjects [2,6,7,76,78-82]. Further-
more, increased sensitivity of T cell subsets from aged
humans to TNF-α-induced apoptosis was associated with
increased and early activation of both caspase-8 and cas-
pase-3. In contrast to our observations, Salvoni et al [99],
using freshly isolated T cell subsets and using TNF-α and
cyclohexamide to induce apoptosis, observed that aged
CD4+ T cells were more resistant to TNF-α-induced-apop-
tosis as compared to young controls. However, these
investigators demonstrated increased susceptibility of
aged CD8+ T cells to apoptosis by Annexin V staining. In
this study the expression of TNFRs or activation of cas-
pases were not studied. These differences may be due to
differential expression of TNFRs. The externalization of
posphatidyl serine (which binds to Annexin V) is medi-
ated by scramblase enzyme, which is sensitive to calcium.
Therefore, significant changes in intracellular calcium
may result in a cell to be positive for Annexin V without
undergoing apoptosis; calcium signaling is different
among CD4+ and CD8+ T cells and among young and
aged T cells (unpublished data). In addition, no data of
the effect of cyclohexamide alone or on Annexin V positiv-
ity was presented. In our study, we have used a model of
in vivo activation and no cyclohexamide was used. The
sensitivity of T cells to TNF-α-induced apoptosis appears
to be age-dependent as cord blood lymphocytes are least
sensitive [100] whereas aged T cells are most sensitive to
TNF-α-induced apoptosis [78].

We also examined a role of downstream signaling mole-
cules in increased apoptosis in aged T cells. We observed
increased expression of TRADD and FADD in lym-
phocytes from aged subjects both at the level of mRNA
and protein [77,78]. However, the expression of RIP both
at the mRNA level and the protein level in aged
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lymphocytes was similar to lymphocytes from young sub-
jects [78].

We have also reported that aged T cell subsets are sensitive
to anti-CD95-induced apoptosis [76]. Since, FADD is
common conduit for both CD95- and TNFR-mediated
apoptosis we examine a role of increased FADD expres-
sion on increased apoptosis in aging. T cells from aged
humans transfected with dominant negative FADD
resulted in decreased TNF-α-induced apoptosis to a level
comparable to young T cells, whereas wild type FADD
resulted in increased apoptosis in both young and aged T
cells albeit to a greater extent in young T cells to a level
comparable to aged T cells, establishing a role of increased
FADD in increased apoptosis in aged T cells [101].

Furthermore, we investigated whether downregulation of
NF-κB activation (an anti-apoptotic signal) may also play
a role in increased TNF-α-induced apoptosis. We have
observed decreased TNF-α-induced DNA-binding activity
of NF-κB in lymphocytes from aged humans as deter-
mined by EMSA and recently developed ELISA assay
[102]. To further define the molecular mechanism of
decreased NF-κB activity, we examined the expression of
phosphorylated IKKβ and IκB. T cells from aged humans
expressed low levels of phosphorylated IKKβ and Iκ-B.
Furthermore, overexpression of IKKβ in aged T cells
resulted in an increased phosphorylation of Iκ-B and
decreased TNF-α-induced apoptosis in aged T cells to a
level comparable to T cells from young subjects. NF-κB
mediates its antiapoptotic effect via induction/upregula-
tion of a number of anti-apoptotic genes, including Bcl-2,
Bcl-xL, cIAPs, FLIP, and Gadd45β [30,31,45]. We have
previously reported that in aging expression of Bcl-2 and
cIAP1 is decreased [77,103]. We also showed that overex-
pressed IKKβ-induced inhibition of increased apoptosis in
aged lymphocytes was associated with an upregulation of
Bcl-2 and cIAP2 [102]. cIAP2 expression is regulated by
NF-κB and therefore decreased cIAP2 in aging would be
consistent with decreased NF-κB activity. Previously we
have reported that Bcl-2 expression (another anti-apop-
totic target of NF-κB) was decreased in aging [77]. These
observations provide evidence for an important role and
mechanisms by which decreased NF-κB sensitizes aging T
cells to increased TNF-α-induced apoptosis. Our observa-
tions of decreased NF-κB activity in aged T cells is in agree-
ment with those reported by Whisler et al [104] and
Pahlvani and Harris [105]. Trebilcock and Ponnappan
[106] demonstrated decreased induction of NF-κB in
response to PMA and TNF-α. These authors further sug-
gested that decreased induction of NF-κB could be due to
decreased proteosome-mediated degradation of IκB
[107]. In summary, it appears that decreased NF-κB acti-
vation contributes to the increased sensitivity of aged T
cells to TNF-α-induced apoptosis.

Naïve, Central Memory and Effector Memory T 
Cells
Naïve T cells following exposure to a viral antigen
undergo clonal expansion followed by clearance of virus.
This phase is followed by a phase of contraction during
which virus-specific T cells undergo apoptosis, and then
number of virus-specific T cells stabilized and remained as
memory T cells [108,109]. The memory T cells display dif-
ferential expression of adhesion molecules (CD62L) and
chemokine receptors (CCR-7), which allow them to home
into lymph nodes and non-lymphoid tissue and mucosal
sites, and to respond to microbes at peripheral tissue sites
[110,111]. Therefore, CCR7+ and CD62high T cells are
found in lymph nodes, whereas CCR7- and CD62Llow are
found in extranodal sites such as liver and lung [112,113].
Based upon these adhesion molecules and chemokine
receptors, memory CD8+ T cells have been divided into
"central memory" T cells for those that are found in lym-
phoid organs and "effector memory" T cells that are found
in peripheral non-lymphoid tissues and mucosal sites
[114-116]. These subpopulations of naïve, central and
effector memory T cells are identified by a number of cell
surface proteins [109,114-117]. Recently, we have further
characterized these subsets of CD8+ T cells [118]. Naïve
CD8+ T cells in addition to expression of CD45RA and
CCR7 also express CD27 and CD28, whereas central
memory (TCM) CD8+ T cells retain these cell surface anti-
gens except CD45RA. Effector memory CD8+ T cells are
further subdivided into three subsets. One subset of effec-
tor memory (TEM-1) is CCR7-CD45RA-CD28+, the sec-
ond set of effector memory CD8+ T cells(TEM-2) is CCR7-
CD45RA-CD28-), and the third set of effector memory
CD8+ T cells (TEM-3/TEMRA) is CDCR7-CD45RA+
CD28-). Fig. 5 shows phenotypic characteristics of naïve
and various memory CD8+ T cells in humans. Although
generally it is considered that TEM-3/TEMRA subset is
lacking from CD4+ T cells, we have observed a very small
subset of TEM-3/TEMRA CD4+ T cells (1%), which is
increased in aging (unpublished data). In analyzing data
of Salusco et al [108], we also noticed a small population
of TEM-3/TEMRA CD4+ T cells, which authors did not
discuss in their results. During subsequent discussion, we
will be using terminology TEM and TEMRA for two effec-
tor memory T cell subsets.

Apoptosis in Naïve, Central Memory and 
Effector Memory CD8+ And CD4+ T Cells
Death-receptor-induced apoptosis in naïve and memory 
CD4+ and CD8+ T cells
Recently, we have examined relative sensitivity of naïve
and various memory CD8+ T cell subsets to TNF-α-
induced apoptosis [83,119]. Mononuclear cells were
activated with anti-CD3 monoclonal antibody for 2 days,
cultured in an IL-2 containing medium for an additional
three days and then activated with TNF-α. Our data show
Page 9 of 15
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that naïve and TCM CD8+ T cells were sensitive whereas
TEM and TEMRA CD8+ T cells were resistant to TNF-α-
induced apoptosis. Apoptosis profile correlated with the
activation of caspase-8 and caspase-3. However, no corre-
lation was observed between relative sensitivity of four
CD8+ T cell subsets to TNF-α-induced apoptosis and the
expression of TNFR-I or TNFR-II. Therefore, we examined
a role of downstream signaling events, including phos-
phorylation of IκB and NF-κB activity following
activation with TNF-α and the expression of Bcl-2 and Bax
in CD8+ T cell subsets. CD8+ CD28+ T cell line (contain-
ing naïve and TCM) and CD8+ CD28- T cell line (contain-
ing TEM and TEMRA were kindly provided by Dr. Abbe
Vallejo, University of Pittsburg) were stimulated with
TNF-α and IκB phosphorylation was measured by West-
ern blotting, using IκB phospho antibodies and NF-κB
activity was measured by ELISA-based assay. The expres-
sion of Bcl-2 and phosphorylated IκB and NF-κB activity
were higher, whereas the expression of Bax was lower in
TEM and TEMRA CD8+ T cells as compared to naïve and

TCM CD8+ T cells (Figure 6). These data suggest that sig-
naling molecules downstream of TNFRs may be responsi-
ble for differential sensitivity among subsets of CD8+ T
cells to TNF-α-induced apoptosis. We have also observed
that similar to CD8+ T cells, naïve and TCM CD4+ T cells
(TCM> naïve) are sensitive to TNF-α-induced apoptosis,
whereas TEM and TEMRA CD4+ T cells are resistant to
TNF-α-induced apoptosis [120].

Naïve, Central Memory and Effector Memory 
CD4+ And CD8+ T Cells in Aging
In aging, there is a significant reduction in naïve CD8+ T
cells [76] and CD8+ CD28+ T cells, which contain both
naïve and central memory CD8+ T cells [121]. In addi-
tion, there is an accumulation of CD8+CD28- T cells,
which are oligoclonal and show characteristics of cellular
senescence (i.e. short telomere length indicative of long
replicative history), and increased IFN-γ production [122-
127]. These CD8+ T CD28- cells are comprised of two sub-
populations of effector memory CD8+ T cells [107],

Phenotypically distinct five distinct subsets of CD8+ T cells, including naïve, central memory (TCM) and three type of effector memory (TEM-1, TEM-2, and TEM-3) cellsFigure 5
Phenotypically distinct five distinct subsets of CD8+ T cells, including naïve, central memory (TCM) and three type of effector 
memory (TEM-1, TEM-2, and TEM-3) cells.
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namely TEM and TEMRA CD8+ T cells. Our study shows
a marked decrease in naïve and TCM CD8+ T cells and an
increase in TEM and TEMRA CD8+ T cells [83]. Fagnoni et
al [76] also observed an increase in primed CD8+CD28-
CD45RA+ (equivalent to TEMRA) in aged humans.

Apoptosis of Naïve, Central Memory and 
Effector Memory T Cell Subsets in Aging
Activation-induced cell death (AICD)
Herndon et al [128] reported an increased AICD of naïve
T (CD45RO-) T cells in aged humans and suggested its
role in age-associated T cell deficiency. However, this
study did not investigate apoptosis in memory T cells.
Brezinska et al [121] have reported that AICD (as meas-
ured by DNA content and caspasese-3 activation) in
CD8+CD28+ (containing naïve and TCM) and
CD8+CD28- (containing TEM and TEMRA) was compara-
ble between young and aging. However, data was pre-
sented from a single middle aged individual.

CD95-mediated apoptosis
In our initial study, we observed that in aged humans,
both CD45RA+ (naïve) and CD45RO+ (memory) CD4+
and CD8+ T cells were more sensitive to anti-CD95-
induced apoptosis as compared to young subjects [77]. In
addition, CD45RO+ displayed greater sensitivity to anti-
CD95-induced apoptosis as compared to CD45RA+
CD4+ and CD8+ T cells in both young and aged subjects.
Miyawaki et al (129) also reported that healthy adult
memory T cells are more susceptible to anti-CD95-
induced apoptosis as compared to naïve T cells. We
reported decreased expression of Bcl-2 in both CD4+ and
CD8+ T cells from aged humans as compared to young

subjects; however, we did not examine Bcl-2 expression in
naïve and memory subsets [77]. Shinohara et al [130]
demonstrated decreased Bcl-2 expression in memory sub-
sets of CD4+ and CD8+ T cells in healthy adults. This
would be consistent with our observation of increased
sensitivity of memory T cell subsets to death-receptor-
mediated apoptosis as compared to naïve T cell subsets.
Although a role of Bcl-2 family protein in death receptor
pathway has been argued, several investigators have dem-
onstrated that Bcl-2 blocks anti-CD95-induced apoptosis
in mitogen-activated T cells [131,132]. Therefore, it is
likely that decreased Bcl-2 expression in aging may play a
role in increased sensitivity of T cell subsets in aged
humans. Since CD45RA+ (contain naïve and TEMRA) and
CD45RA-/CD45RO+ (contain TCM and TEM) are heter-
ogenous and display differential sensitivity (naïve and
TCM are sensitive and TEM and TEMRA are resistant) to
other death stimuli, further studies are warranted with
CD95-mediated signal in naïve and different memory
subsets of CD8+ T cells.

TNF-α-induced apoptosis
In our previous study we reported that both CD45RA+
naïve and CD45RA- memory CD4+ and CD8+ T cells
from aged individuals were more sensitive to TNF-α-
induced apoptosis [78]. Since CD45RA+ and CD45RA- T
cells are heterogeneous we examined the relative sensitiv-
ity of naïve, TCM, TEM and TEMRA CD8+ and CD4+ T cell
subsets to TNF-α-induced apoptosis in young and aged
subjects. In aged humans, we observed that naïve and cen-
tral memory CD8+ T cells displayed increased TNF-α-
induced apoptosis as compared to young subjects, which
is associated with increased caspase-8 and caspase-3
activation. Therefore, it appears that during aging decrease
in naïve CD8+ T cells may be due to both decreased
thymic output as well as increased apoptosis. We have
also observed greater increased in apoptosis in TCM CD8+
T cells as compared to naïve CD8+ T cells in aged humans.
In contrast, no significant difference was observed in the
apoptosis of TEM and TEMRA CD8+ T cells between aged
and young humans; both were comparably resistant to
apoptosis [120]. This would suggest that the accumula-
tion of TEM and TEMRA CD8+ T cells in aged humans is
not due to changes in apoptosis and may be due to
increased growth. We have observed that both TEM and
TEMRA CD8+ T cells from young and aged subjects prolif-
erate well in the presence of exogenous IL-2 and IL-15
even more than TCM CD8+ T cells (unpublished observa-
tion). We have also observed increased expression of IL-
15 gene in CD8+ T cells from aged humans (by gene
array) as compared to young subjects. These observations
suggest that CD8+CD28- T cells generated by repeated
activation in vitro are not a true model for CD8+CD28- T
cells in aged humans since the latter cells do not prolifer-
ate (replicative senescence).

Expression of phosphorylated IKKβ, Bcl-2, and Bax in CD8+CD28+ and CD8+CD28- T cell linesFigure 6
Expression of phosphorylated IKKβ, Bcl-2, and Bax in 
CD8+CD28+ and CD8+CD28- T cell lines. CD8+CD28- T 
cells, which are resistant to TNF-α-induced apoptosis, 
expressed increased levels of Bcl-2 and phospho IKKβ and 
decreased levels of Bax.
Page 11 of 15
(page number not for citation purposes)



Immunity & Ageing 2005, 2:12 http://www.immunityageing.com/content/2/1/12
Since the expression of TNFR-I or TNFR-II is similar in
young and aged humans, we have examined role of down-
stream signaling events in increased sensitivity of naïve
and TCM CD8+ T cells in aged humans to TNF-α-induced
apoptosis (manuscript in preparation). We have observed
that CD28-CD8+ (containing naïve and TCM) from aged
subjects display decreased phosphorylation of IKKα/β
and IκB and decreased activation of NF-κB. Since NF-κB
mediates its anti-apoptotic effect via induction of a
number of anti-apoptotic molecules (IAP, FLIP, A20, Bcl-
xL), we examined expression of these molecules by West-
ern blotting. cIAP1, FLIPL, FLIPS, A20, and BCL-xL expres-
sion were decreased in aging CD28-CD8+ T cells. These
data would suggest that decreased NF-κB activity may be
central to increased sensitivity of naïve and TCM CD8+ T
cells and perhaps of CD4+ T cells (since they also show
similar profile of apoptosis in aging) to TNF-α-induced
apoptosis.

B Cells Subsets in Human Aging
B-lineage cells following immunoglobulin (Ig) gene rear-
rangement to generate functional antigen receptor are
released into the peripheral blood B cell pool as naïve B
cells. After exposure to a T-dependent antigen, Naïve be
cells differentiate via one of two different pathways. They
can either differentiate into short-lived Ig secreting cells or
they migrate to germinal center, where high-affinity anti-
gen-specific B cells are selected and undergo proliferation,
somatic hypermutation of Ig V-region genes, isotype
switching and develop into long-lived memory B cells
[133-135]. Although a number of cell surface markers
have been used to identify memory B cells including lack
of surface IgD expression and expression of membrane
IgG and IgA [135], or as IgD-CD38- B cells [136], these
markers identify only certain populations of memory B
cells. Recently, CD27 has been identified as a key marker
of memory B cells and CD27 signaling promotes the dif-
ferentiation of memory B cells to Immunoglobulin-secret-
ing plasma cells [137].

Aging is associated with both quantitative and qualitative
changes in humoral immunity. These include decreased
levels of IgM and increased levels of IgG and IgA,
decreased B cell repertoire, decreased primary and second-
ary specific antibody response to vaccine antigens and
changes in antibody affinity [138]. It has been demon-
strated that CD27 expression increases with age; lacking in
cord blood B cells and approximately 40% of adult B cells
express CD27 antigen [137]. We have examined the pro-
portions and numbers of naïve and memory B cells in
thirty young and fifty aged subjects. Our data show that
the proportion of CD27+CD19+ memory B cells is signif-
icantly increased whereas the proportion of CD27-CD19+
naïve B cells is significantly decreased. This may explain
reduced specific antibody response to novel antigens and

increased accumulation of somatic mutation of Ig variable
region genes in aged humans [139]. When B cells were
analyzed for the expression of CD38 to define activated
and switchable B cells, no significant difference was
observed between young and aged subjects. Our observa-
tions are in complete contrast to recent report by Chong
et al [74], who observed decreased memory and increased
naïve B cells in aged subjects. The reason for this discrep-
ancy is unclear. Our aged subjects were of middle socio-
economical class, in good health and living independ-
ently. Since majority of seniors are on a number of supple-
ments, including anti-oxidants and vitamin A and E,
which can modify immune functions and apoptosis, our
subjects were asked to discontinue all supplements at least
one week prior to blood draw. Therefore, our population
did not have any nutritional or chemical compounding
factors. Chong et al [74] also demonstrated that naïve B
cells were more resistant to spontaneous apoptosis as
compared to memory B cells.

One small subpopulation of B cells express CD5 antigen,
a 67 kDa monomer, which was originally identified as a
subset of T cells. CD5+ B cells express a limited repertoire
of V genes, secrete IgM antibodies that often react with self
antigens (autoantibodies), and appear to be self-renewing
population. These cells are expanded in autoimmune dis-
eases. Since aging is associated with autoimmunity we
have analyzed CD5+ B cells in aged subjects. We observed
no difference in the proportions and numbers of CD5+ B
cells between aged and young subjects. Furthermore, we
examined the expression of CD95 and apoptosis in these
subsets. We have observed increased proportions of
CD95+CD5+ cells in aging as compared to young con-
trols; however, the expression of CD95 did not correlate
with apoptosis, which was comparable in young and aged
subjects (manuscript submitted).

In summary, increased apoptosis in naive and TCM CD8+
T cells in aging appears to play an important role in lym-
phopenia of naïve and TCM CD8+ T cells (83), which
might be responsible for decline in T cell functions and
increased susceptibility to viral infection and increased
frequency of cancer in aging. Data of B cells in aging is
conflicting and more in-depth analysis is needed.
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