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Abstract
Background  Immunosenescence, the gradual deterioration of the immune system, is critical for aging-related 
diseases. However, the lack of detailed population-level immune data has limited our understanding, underscoring 
the need for innovative analytical approaches. The Health and Retirement Study (HRS) in the United States provides 
a unique opportunity to examine T and B lymphocyte subsets using compositional data analysis and dimension 
reduction techniques.

Methods  We constructed a hierarchical tree structure to map relationships among T and B subset cells in HRS. 
Network analysis examined conditional dependence across 16 immune subset cells, while stepwise redundancy 
analysis (SRDA) identified a subset of pairwise logratio measures that capture main variance in immune composition. 
We conducted two sets of supervised learning analyses: first, linear penalized log-contrast models to examine the 
associations between subset cells and three health outcomes (chronic disease index, self-reported health, and 
frailty level); second, linear regressions to examine the associations between the top selected logratios and health 
outcomes.

Findings  Our study included 6,250 participants from the HRS with a median age of 68. Network analysis showed 
some dependence among 16 immune subset cells, including associations between central memory CD4 + T cells and 
both other CD4 + T cells and other lymphocytes, as well as between central memory CD8 + T cells and other CD8 + T 
cells. SRDA identified nine key log-ratio measures, explaining over 90% of the variance in immune composition. Linear 
penalized log-contrast models showed that a lower proportion of naïve CD4 + T cells and higher proportions of other 
CD4 + and central memory CD8 + T cells were significantly associated with greater chronic disease burden, poorer self-
reported health, and higher frailty levels. Linear regression models using log-ratios reinforced these patterns, showing 
that a higher ratio of other lymphocytes over naïve CD4 + T cells and terminally differentiated effector memory 
CD4 + T cells over other CD8 + T cells were associated with greater chronic disease burden, poorer self-reported 
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Introduction
The immune system experiences significant changes with 
age and exposure to various infections and psychosocial 
stressors [1–3]. These changes, collectively known as 
immunosenescence, include low-level chronic systemic 
inflammation, a reduction in naïve T cells, an accumu-
lation of effector memory T cells with diminished func-
tion, and a reversal in the CD4+:CD8 + T cell ratio [4–6]. 
Understanding these immune shifts at a population level 
requires integrating perspectives from immunology, epi-
demiology, and biostatistics. An early attempt to identify 
a risk phenotype associated with immune system aging in 
population studies led to the development of the immune 
risk phenotype (IRP) [7–10]. This measure, which mainly 
consisted of CD8 + and CD4 + T cells and T cell prolif-
erative response, was developed through the analysis of 
peripheral blood samples in cohorts of octogenarians and 
nonagenarians [7, 10]. However, IRP was not reproduced 
in larger studies and was also challenging to implement 
due to the multiple biomarkers required to determine 
this phenotype [11, 12]. 

In 2016, Aiello et al. further innovated these mea-
sures by examining ratios of CD4 and CD8 effector cells 
to naïve cells as indicators of the immune system’s shift 
toward an IRP [13]. They examined how the effector to 
naïve ratio, combined with CMV seropositivity, was asso-
ciated with socioeconomic and stress-related exposures. 
Building on these findings, our group and others have 
applied these measures in the Health and Retirement 
Study (HRS) in the United States (U.S.), demonstrating 
the immune system is associated with social stress and 
environment.[4–6,14−17] Furthermore, these measures 
have also been used to examine the relationship between 
immunosenescence and various health outcomes in HRS, 
including type 2 diabetes mellitus, cardiovascular dis-
eases, cancer, neurodegenerative disorders, frailty, and 
increased premature mortality [18–21]. Collectively, 
these studies provide valuable insights into the causes 
and consequences of immunosenescence.

Valid measures of immunosenescence are critically 
important to test hypotheses about its causes and conse-
quences. To date, researchers have employed three main 
methods to construct lymphocyte-based measures for 
characterizing immunosenescence. These approaches 
include absolute counts of different subset cells (i.e. 
CD4 + and CD8 + T cells) [16, 18, 19, 22], percentages 

of specific subset cells relative to their parent popula-
tion (i.e. the percentage of naïve CD4 + T cells over all 
CD4 + T cells) [4, 14, 18, 20], and ratios between various 
pairs of subset cells (i.e. CD4+: CD8 + T cell ratio, termi-
nally differentiated effector memory: naïve CD4 + T cell 
ratio) [4–6, 14, 18, 20, 21]. While these measures have 
yielded important insights, they may not adequately 
capture the system-wide interactions among and within 
different lymphocyte subsets. Given the close interde-
pendence between T and B cells, conceptualizing their 
relationships as part of an interconnected and dynamic 
network is crucial for advancing our understanding of 
immunosenescence [23–25]. 

T and B cells, key components of lymphocytes and 
the adaptive immune system, experience a decrease in 
the production of naïve cells and an increase in memory 
cells with aging and immunological challenges [26, 27]. 
It is important to note that the increase in memory cells 
is associated with CMV infection [22]. T cells respond to 
pathogens by directly attacking infected cells and pro-
ducing cytokines, which mobilize other immune compo-
nents [28]. B cells primarily produce specific antibodies 
that neutralize viruses and bacteria or mobilize other 
effector cells and molecules to destroy invading micro-
organisms [29]. In this process, T cells not only fend off 
infections but also support B cell maturation and anti-
body production, crucial for long-term immunity [28, 
30]. The cooperative dynamics between these two subset 
cells are fundamental to a robust immune system. There-
fore, the relationships among different subset cells are 
themselves important to understand as both predictors 
and endpoints related to health and disease [25]. 

It is critical to consider the biological role of differ-
ent immune subset cells in immune defense and aging. 
Adequate numbers and diversity of naïve T and B cells 
are critical to the immune defense against new (e.g. 
West Nile virus, SARS-1, SARS-CoV-2) or reemerging 
mutating (e.g. influenza) infections, and both decline 
with aging, which happens earlier and more severely for 
naïve T cells, particularly CD8 cells [27, 31]. In this man-
ner, reduced naïve T and B cells are expected to correlate 
with, and mechanistically contribute to, increased mor-
bidity and mortality from new infections. Conversely, 
highly differentiated memory lymphocytes, again par-
ticularly T cells, can fuel dysregulated inflammation and 
tissue dysfunction by secreting one or more cytokines 

health, and higher frailty levels. In contrast, a higher ratio of other lymphocytes over central memory CD4 + T cells was 
associated with better health outcomes.

Interpretation  Our findings highlight the value of a systems-based approach and compositional analysis in 
understanding immunosenescence and its impact on health. The identified subset cells and logratio measures 
provide meaningful insights into immune aging and warrant further investigation to explore their long-term 
relationships with health outcomes.
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or chemokines that participate in these processes [32]. 
This would directly relate to the increased frequency and 
severity of age-related chronic diseases and geriatric syn-
dromes. Recent studies have identified molecular mark-
ers or transcriptional signatures of such cells, including 
CD151 and granzyme K (GzmK), and their role is under 
intense investigation [24, 33–35]. 

In this study, we aim to characterize the interrelation-
ships among available lymphocyte subset cells in HRS, 
identify which logratio measures capture main vari-
ance across all possible logratio measures, and examine 
how these subsets and their derived logratios relate to 
health outcomes. To achieve these aims, we employed a 
system-based approach and combined unsupervised and 
supervised learning methods. First, we built a tree struc-
ture to delineate relationships across T and B subset cells 
and construct corresponding compositional measures. 
Second, we applied unsupervised learning techniques 
to examine the inter-relationships among various subset 
cells and identified key logratio measures that explain 
the most significant variations. Finally, using supervised 
learning, we examined the associations between immune 
subset cells and logratios with multiple health outcomes. 
This integrated approach offers a comprehensive frame-
work for analyzing immune system complexity in a large, 
population-based setting.

Methods
Study population and procedures
The Health and Retirement Study (HRS) is an ongoing 
nationally representative longitudinal survey of older 
adults in the U.S. It began in 1992 and included over 
22,000 adults over the age of 50 years at baseline and 
interviewed every two years [17]. Data collection con-
sisted of face-to-face baseline interviews and primar-
ily telephone interviews for follow-up waves, until 2006, 
when half the sample (alternated at each subsequent 
wave) was randomly assigned face-to-face interviews to 
enhance physical and biological measures. In this study, 
we utilized data from the 2016  h survey that included 
venous blood samples collected from 9,932 participants 
during 2016-17.

All participants who completed an interview during the 
2016 wave were asked to consent to a venous blood draw 
except for proxy respondents and nursing home resi-
dents. The request was made by their HRS interviewers at 
the end of the interview. Blood collection occurred in the 
participants’ homes, managed by Hooper Holmes Health 
& Wellness. The vast majority of the blood samples were 
collected within four weeks of the interview completion. 
Overall, 65% of eligible participants provided a blood 
sample. Blood collected in cell preparation tubes (CPTs) 
was shipped at room temperature to the Advanced 
Research and Diagnostics Laboratory at the University of 

Minnesota and processed within 48 h of collection. The 
samples were transported in Styrofoam-lined shipping 
containers with foam holders specifically designed for the 
CPTs. Additionally, 2–3 gel packs, maintained at room 
temperature, were placed outside the Styrofoam layer but 
within the cardboard container to minimize temperature 
fluctuations during transit. The CPTs were centrifuged 
to isolate peripheral blood mononuclear cells (PBMCs), 
which were then cryopreserved using established proto-
cols and stored in liquid nitrogen freezers for future use 
[16, 36]. 

Immunophenotyping and percentage measures
The immune subset cells were identified using minor 
modifications to the standardized protocol published by 
the Human Immunology Project [37]. Per these guide-
lines, large batch analysis of frozen and thawed PBMC 
was found to be superior in reproducibility, while reduc-
ing small-batch variability associated with fresh sample 
analysis. One vial of cryopreserved mononuclear cells 
containing ~ 4  million cells was thawed, and cells were 
incubated at 37  °C in Roswell Park Memorial Institute 
media for 1 h. The cells were centrifuged at 1 200 rpm for 
10 min at room temperature. The cells were resuspended 
in 1× phosphate buffered saline and stained as outlined 
previously [38]. The cells were kept on ice until analysis. 
All flow cytometry measurements were performed on an 
LSRII flow cytometer or a Fortessa X20 instrument (BD 
Biosciences, San Diego, CA). The validity of the T cell 
distributions obtained from cryopreserved PBMCs using 
the procedures used in HRS has been demonstrated pre-
viously [38]. In addition, control samples from healthy 
volunteers collected and cryopreserved at the start of 
the study were analyzed at least twice per week using the 
study protocol to monitor laboratory shifts and drifts in 
the immunophenotyping assessments.

In this study, we focused on lymphocyte data and key 
components of the adaptive immune system: T and B 
cells. These cells were measured in the same panel based 
on previously published protocols [36, 38], and the 
immunophenotyping data were analyzed using Open-
Cyto and FlowAnnotator [39]. Table 1 presents 15 exam-
ined T and B subset cells, including the cell type, marker 
used to determine the cell, abbreviated name, and per-
centage measure. In HRS flow cytometry, T and B subset 
cells were initially measured as percentages, calculated as 
the proportion of events relative to their parent popula-
tions within the live lymphocyte gate after removing dou-
blets. Each subset cell was represented as a percentage of 
its parent cell. For example, the percentage of T cells was 
calculated as ‘Total T cells/total lymphocyte*100’; the 
percentage of TCD4 + was calculated as ‘CD4 + T cells/
total T cells*100’; the percentage of TCD4N was calcu-
lated as ‘CD4 + Naïve T cells/CD4 + T cells*100’.
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While both percentage data and count data were pro-
vided in the HRS, we prioritized the use of percentage 
data for two reasons. First, percentages were the pri-
mary measurements obtained in the HRS, while counts 
were derived by multiplying these percentages by total 
lymphocyte counts from the complete blood count. Our 
analyses confirmed that results based on percentages 
were identical to those obtained using counts, as both 
reflect the same underlying immunophenotypes. Second, 
percentage data offer greater consistency for population-
level analyses by standardizing measurements relative to 
parent populations. This reduces biases caused by inter-
individual variability in total lymphocyte counts and 
facilitates meaningful comparisons across a large cohort.

Tree structure and compositional measures
Based on the T and B subset cells in Table  1, we con-
structed a hierarchical tree structure to delineate the 
relationships among these cells across four levels of 
granularity (Fig. 1). In addition to the 15 subset cells pro-
vided by HRS, we introduced five additional subset cells 
because the sum of various subset cells at the lower level 
did not add up to 100% for their corresponding parent 
cells. For example, we introduced “other lymphocytes” 
because the combined percentage of T cells and B cells 
was less than 100%. The five newly defined five subsets 
included other lymphocytes (LYMPO), other B cells 
(BO), other T cells (TO), other CD4 + T cells (TCD4O), 
and other CD8 + T cells (TCD8O).

The percentage measures of subset cells in Table  1 
used different denominators, making it difficult to exam-
ine and analyze them as a system. Based on the tree 

Table 1  Available percentage measures of 15 major subsets of T and B cells
Number Cell type Marker Abbreviated 

name
Percentage measure

1 T cells CD3 + CD19- Total T cells/total lymphocyte*100
2 CD4 + T cells CD3 + CD19- CD8- CD4+ TCD4+ CD4 + T cells/total T cells*100
3 CD4 + T cells: Naïve CD3 + CD19- CD8- 

CD4 + CD45RA + CCR7 + CD28+
TCD4N CD4 + Naïve T cells/CD4 + T 

cells*100
4 CD4 + T cells: Central memory 

(CM)
CD3 + CD19- CD8- CD4 + CD45RA- 
CCR7 + CD28+

TCD4CM CD4 + CM T cells/CD4 + T cells*100

5 CD4 + T cells: Effector memory 
(EM)

CD3 + CD19- CD8- CD4 + CD45RA- CCR7- CD28- TCD4EM CD4 + Tem T cells/CD4 + T 
cells*100

6 CD4 + T cells: Terminally differenti-
ated effector memory (TDEM)

CD3 + CD19- CD8- CD4 + CD45RA + CCR7- CD28- TCD4TDEM CD4 + TemRA T cells/CD4 + T 
cells*100

7 CD8 + T cells CD3 + CD19- CD8 + CD4 TCD8+ CD8 + T cells/total T cells*100
8 CD8 + T cells: Naïve CD3 + CD19- CD8 + CD4- 

CD45RA + CCR7 + CD28+
TCD8N CD8 + Naïve T cells/CD8 + T 

cells*100
9 CD8 + T cells: Central memory 

(CM)
CD3 + CD19- CD8 + CD4- CD45RA- 
CCR7 + CD28+

TCD8CM CD8 + CM T cells/CD8 + T cells*100

10 CD8 + T cells: Effector Memory 
(EM)

CD3 + CD19- CD8 + CD4- CD45RA- CCR7- CD28- TCD8EM CD8 + Tem T cells/CD8 + T 
cells*100

11 CD8 + T cells: Terminally differenti-
ated effector memory (TDEM)

CD3 + CD19- CD8 + CD4- CD45RA + CCR7- CD28- TCD8TDEM CD8 + TemRA T cells/CD8 + T 
cells*100

12 B cells CD3- CD19+ Total B cells/total lymphocyte*100
13 Naive B cells CD3- CD19 + IgD + CD27+ BN Naive B cells/total B cells
14 IgD- Memory B cells CD3- CD19 + IgD- CD27+ BMIgD- IgD- memory B cells/total B cells
15 IgD + Memory B cells CD3- CD19 + IgD + CD27- BMIgD+ IgD + memory B cells/total B cells

Fig. 1  Hierarchical tree structure of T and B cell subsets. Footnote: The full names of the subset cells are summarized in Table 1. The subset cells high-
lighted with a blue background at the lowest level were included in our analysis
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structure, we converted the percentage measures to com-
positional measures through several steps, allowing us to 
represent the proportion of each subset cell relative to 
the total lymphocyte count. First, we excluded 3,032 indi-
viduals with missing data on T and B cells and their sub-
sets. We compared those with and without missing data 
and found they were comparable in main sociodemo-
graphic characteristics (Supplementary Table 1). Second, 
we excluded 39 participants because adding percentages 
of subset cells at the lower level exceeded 100%. Last, we 
generated the compositional measure for each subset cell 
by multiplying proportion measures at different levels so 
that the newly generated measure reflected the propor-
tion of each subset cell in relation to the total lympho-
cyte count. The 16 subset cells at the most granular level 
(colored blue) in Fig.  1 were used for statistical analy-
sis to provide the most detailed information and avoid 
redundancy.

Health outcomes
We included three main health outcomes: a chronic dis-
ease index, self-reported health, and frailty level. The 
chronic disease index is the number of self-reported 
chronic conditions for each participant at the time of 
data collection in 2016 and ranges in value from 0 to 
8. It is created by summing the number of affirmative 
responses to the following questions: Has a doctor ever 
told you that you have the following condition: (1) hyper-
tension or high blood pressure; (2) diabetes or high blood 
sugar; (3) cancer or a malignant tumor of any kind except 
skin cancer; (4) chronic lung disease except asthma such 
as chronic bronchitis or emphysema; (5) heart attack, 
coronary heart disease, angina, congestive heart failure, 
or other heart problems; (6) stroke or transient ischemic 
attack; (7) emotional, nervous, or psychiatric problems; 
and (8) arthritis or rheumatism. The measure of self-
reported health is represented by participants’ rate of 
their health status on a five-point scale ranging from 1 
(excellent) to 5 (poor).

Frailty was measured using a deficit accumulation 
approach that included 44 variables reflecting multiple 
physiological systems in HRS [40–42]. These variables 
included self-reported chronic diseases, self-reported 
health, limitations in ADLs and IADLs, mobility restric-
tions, cognitive functioning, sensory impairments, 
somatic and depressive symptoms, BMI categories, and 
low physical activity. Each variable was scored from 0 (no 
deficit) to 1 (complete deficit), with intermediate values 
for ordinal or metric items. A continuous frailty index 
ranging from 0 to 1 was calculated as the total score 
divided by the maximum possible score. For interpret-
ability, we categorized the frailty index into four ordered 
groups: robust (< 0.15), prefrail (0.15–0.24), mildly frail 
(0.25–0.34), and moderate-to-severely frail (≥ 0.35). 

These categories, assigned values from 1 to 4, allowed 
frailty to be examined as an ordered categorical out-
come, consistent with the other two health measures. 
Across all three health outcomes, lower values indicate 
better health status. Correlations among these outcomes 
ranged from 0.37 to 0.60 (Supplementary Table 2), with 
the strongest correlation (r = 0.60) between the chronic 
disease index and frailty.

Other covariates
Self-reported sociodemographic characteristics were 
collected in the 2016 core interview, including age, sex, 
race/ethnicity, and educational attainment. Sex was self-
reported as either men or women. Race/ethnicity was 
categorized as non-Hispanic White, non-Hispanic Black, 
Hispanic, or Other Race. Educational attainment was cat-
egorized as below secondary education, lower secondary 
education, upper secondary education, and above upper 
secondary education. Cytomegalovirus (CMV) seroposi-
tivity was assessed using the Roche e411 immunoassay 
analyzer (Roche Diagnostics Corporation, Indianapo-
lis, IN). The interassay coefficient of variation was 3.4% 
at a mean concentration of 1.2 COI (cutoff interval) 
and 2.9% at a mean concentration of 141.4 COI. Results 
were reported as nonreactive (< 1.0 COI) or reactive 
(≥ 1.0 COI). Since CMV is known to affect immune cell 
composition, especially effector T cells and memory T 
cells, we included CMV status (nonreactive or reactive) 
as a covariate to account for its possible influence on 
immune-health associations. A total number of 611 par-
ticipants without information on these covariates were 
excluded. The final analytical sample included 6,250 par-
ticipants, and the flow chart is shown in Supplementary 
Fig. 1.

Statistical analysis
All analyses were conducted using R version 4.2. We 
examined correlations among the 16 subset cells at the 
most granular level in Fig. 1. We conducted both unsu-
pervised and supervised learning analyses on lympho-
cyte compositional measures. The unsupervised learning 
focuses on network analysis of lymphocyte cell types with 
sparse inverse covariance estimation for ecological asso-
ciation inference (SPIEC-EASI) and dimension reduction 
with stepwise redundancy analysis (SRDA) [43, 44]. The 
supervised learning explores the association between 
health outcomes and lymphocyte cell types using a linear 
penalized log-contrast model. To facilitate the analysis, 
we substituted the smallest percentage of cell type in the 
dataset for 2883 participants with a subset cell value of 
0%.

We used the SpiecEasi package to conduct a network 
analysis and examine the conditional dependence struc-
ture among the 16 subset cells. The method estimates 
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an undirected, weighted network from compositional 
data using the covariance selection method (GLASSO) 
or neighborhood selection method (MB) [45]. In addi-
tion, we used the easyCODA package to identify a sub-
set of pairwise logratios that can effectively capture the 
complete lymphocytes dataset [46]. Logratios are widely 
used when analyzing compositional data due to their 
subcompositional coherence property [45]. However, the 
extensive nature of the complete set of pairwise logratios 
presents a significant analytical challenge, necessitating 
a reduction in redundancy for practical application [44]. 
We analyzed 120 pairwise logratios constructed based 

on the 16 subset cells. In the first instance, we introduce 
all logratios and chose one of the logratios which would 
explain the highest percentage of the total variance. The 
second logratio that, independent from the chosen one, 
explained the largest percentage of variance was chosen 
from the remainder of the logratios, and the process iter-
ated until 100% of the total variance was accounted for.

We conducted two sets of supervised learning analyses. 
First, we applied a linear penalized log-contrast model to 
examine the relationships between selected health out-
comes and the 16 subset cells [47]. This model allows for 
both variable selection and estimation while accounting 
for the structure of compositional data. Variable selec-
tion was achieved by including a penalization term in the 
objective function. The tuning parameters were selected 
based on Bayesian information criterion (BIC) [48], and 
95% confidence intervals were constructed using the 
bootstrap with 200 repetitions. Second, we used linear 
regression to assess the associations between selected 
health outcomes and selected logratio measures, which 
together capture 90% of the total variance in immune cell 
composition. For each health outcome, we fitted three 
models: (1) using either the 16 immune subset cells or 
the top logratio measures as predictors; (2) adjusting for 
age and gender; (3) further adjusting for race, education 
attainment, and CMV.

Results
Participants included in our analysis had a median age of 
68 years (IQR range: 62.0, 77.0), and 57.4% were women 
(Table 2). The majority of the participants were Non-His-
panic White (65.0%) and achieved an education level of 
high school or above (80.6%). The median chronic disease 
index was 2.0 with a higher score indicating more self-
reported chronic conditions. The median self-reported 
health score was 3.0 (good) with a higher score indicat-
ing worse self-reported health. The median proportion 
for each type of 16 subset cells ranges from 0.07 to 21.1%. 
Details on distributions of 16 subset cells of lymphocytes 
included in the analysis are also summarized in Table 2. 
Their correlations with each other are presented in Sup-
plementary Fig. 2.

SPIEC-EASI showed pair-wise associations among sub-
set cells when adjusting for all other cell types based on 
both GLASSO and MB methods (Fig.  2A). Both meth-
ods produced similar findings. Five subset cells and three 
pairs were associated with each other. After adjusting for 
all other cell types, TCD4CM was positively associated 
with TCD4O and negatively associated with LYMPO. 
TCD8CM was positively associated with TCD8O. 
Based on the 16 subset cells, a total number of 120 pos-
sible logratios were generated, having a total variance 
of 0.5767. Out of the 120 logratios, 15 of them were lin-
early independent, explaining 100% of the total logratio 

Table 2  Demographic characteristics of the health and 
retirement study analytic sample

Median/Count IQR/Percentage
Age (years) 68 (62.0, 77.0)
Gender
Men 2,660 42.6%
Women 3,590 57.4%
Race
Non-Hispanic White 4,060 65.0%
Non-Hispanic Black 1,075 17.2%
Hispanic 915 14.6%
Other 200 3.2%
Education
Below secondary 546 8.7%
Lower secondary 670 10.7%
Upper secondary 1,880 30.1%
Above upper secondary 3,154 50.5%
CMV
Non-reactive 1,785 28.6%
Reactive 4,465 71.4%
Chronic disease index 2 (1.00, 3.00)
Self-reported health 3 (2.00, 4.00)
Frailty level 2 (1.00, 3.00)
T cells
TCD4N (%) 19.8 (12.50, 28.50)
TCD4CM (%) 17.3 (13.50, 21.50)
TCD4EM (%) 0.07 (0.00, 0.38)
TCD4TDEM (%) 0.53 (0.18, 1.56)
TCD4O (%) 6.46 (4.39, 8.91)
TCD8N (%) 2.79 (1.72, 4.37)
TCD8CM (%) 1.09 (0.67, 1.74)
TCD8EM (%) 0.11 (0.03, 0.32)
TCD8TDEM (%) 6.28 (3.29, 11.30)
TCD8O (%) 2.69 (1.63, 4.14)
TO (%) 4.06 (2.74, 6.13)
B cells
BN (%) 3.8 (2.27, 6.00)
BMIgD- (%) 0.53 (0.30, 0.91)
BMIgD+ (%) 0.58 (0.32, 1.01)
BO (%) 0.52 (0.31, 0.86)
Other lymphocytes
LYMPO (%) 21.1 (14.50, 30.00)
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Fig. 2  Results of unsupervised learning analyses using sparse inverse covariance estimation for ecological association inference (SPIEC-EASI) and step-
wise redundancy analysis (SRDA). Footnote: Panel A shows pair-wise associations among subset cells based on SPIEC-EASI, with orange lines indicating 
positive associations and blue lines indicating negative correlations. Panel B shows additional and cumulative variances of by each logratio among the 15 
linearly independent logratios based on SRDA
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variance (Fig.  2B). SRDA showed that log(TCD4N/
TCD8TDEM) explained 26.5% of the total variance. Fol-
lowing this, log(LYMPO/TCD4N) emerged as the next 
most significant contributor, explaining an additional 
17.7% of the total variance. The first nine selected logra-
tios explain 90.6% of the total variance, which can be 
used to effectively characterize the dataset (Supplemen-
tary Table 3).

Table 3 shows associations between the 16 subset cells 
and three health outcomes using linear penalized log-
contrast models. For chronic disease index, TCD4N, 
TCD8O, and BMIgD + were negatively associated with 
the number of chronic diseases across the three models, 
while TCD4O and TCD8CM were positively associated 
with the number of chronic diseases. For self-reported 
health, only models 1 and 2 had non-zero coefficient 
estimates for the 16 subset cells. Across the two mod-
els, TCD4N was associated with better health while 
TCD4EM was associated with worse health. TCD4N 
and TCD4EM were also the two most important subset 
cells when predicting self-reported health in the solu-
tion path plot for Model 3 (Supplementary Fig.  3). For 
frailty level, TCD4N and TCD8O were negatively associ-
ated with severity across all three models, while TCD4O 
and TCD8CM were positively associated. This pattern of 
associations was very similar to the results observed for 
the chronic disease index.

Table  4 shows the associations between the selected 
nine logratios, which explain over 90% of the total vari-
ance across all possible logratios, and the three health 
outcomes using linear regression models. For the chronic 
disease index, LYMPO/TCD4N and TCD4TDEM/
TCD8O were positively associated with a higher num-
ber of chronic conditions across models, while LYMPO/
TCD4CM was negatively associated. For self-reported 
health, higher LYMPO/TCD4N was positively associated 
with worse health across models. LYMPO/TCD4CM and 
TCD4N/TCD4O were negatively associated with better 
health in models 1 and 2, but these associations weak-
ened in model 3 after adjusting for additional covariates. 
For frailty level, LYMPO/TCD4N and TCD4TDEM/
TCD8O were positively associated with higher frailty lev-
els across models, while LYMPO/TCD4CM and TCD4N/
TCD4O were negatively associated, mirroring the pat-
terns observed for chronic disease index. Additionally, 
comparing models using the selected nine logratios ver-
sus all 120 pairwise logratios, the adjusted R² values were 
similar, indicating that the reduced model captures most 
of the explanatory power while offering a more interpre-
table representation of immune cell composition.

Discussion
In this study, we examined relationships among subsets 
of T and B cells and their relationship with health out-
comes using the HRS venous blood data. We had three 
main findings: first, we found three pairs of subset cells 
associated with each other when adjusting for all other 
subset cells, including TCD4CM and TCD4O, TCD4CM 
and LYMPO, and TCD8CM and TCD8O. Second, we 
identified nine logratios explaining over 90% of the total 
variance, indicating they well represent the dataset of T 
and B cells. Third, we found multiple subset cells asso-
ciated with health outcomes of chronic disease index 
and self-reported health, including TCD4N, TCD4EM, 
TCD4O, TCD8CM, TCD8O, and BMIgD+. These find-
ings together suggested a relatively low correlation across 
subsets of T and B cells and the importance of consider-
ing multiple subset cells as a complex system when exam-
ining the relationship between immunosenescence and 
health outcomes.

We constructed a tree structure of available T and 
B subset cells. The newly defined five subsets of ‘other 
cells’ showed the presence of additional subsets not 
fully captured through immunophenotyping conducted 
by HRS. Network analysis using SPIEC-EASI revealed 
much sparser interrelationships among subset cells than 
expected, suggesting that the majority of subset cells 
were conditionally independent. The sparse interrelation-
ships among T and B subset cells have not been exten-
sively explored or reported in previous studies using 
population health data. Multiple ‘other cells’ were associ-
ated with either TCD4M or TCD8O, indicating the exis-
tence of important, unmeasured cell types of interest. It 
is interesting to observe that TCD4CM was positively 
associated with TCD4O, and TCD8CM was positively 
associated with TCD8O. Since the younger (naïve cells) 
and older stage cells (effector memory cells and termi-
nally differentiated effector memory cells) have been 
identified, these ‘other cells’ are more likely to be in the 
intermediate stage.

Contrary to our expectations, our network analysis 
did not reveal a negative association between naïve and 
terminally differentiated effector memory cells in both 
TCD4 + and TCD8 + subsets. This absence of a nega-
tive correlation can be attributed to the methodological 
approach of network analysis, which examines correla-
tions between each pair of subset cells while adjusting for 
all other subsets. Interestingly, upon analyzing pairwise 
correlations across 16 subset cells, we indeed observed 
negative correlations between naïve and terminally dif-
ferentiated effector memory cells for both TCD4 + and 
TCD8+.

Using SRDA, we further found that nine logratios 
explain over 90% of the total variance. The reduction from 
15 independent logratios to nine suggests a relatively low 
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Chronic disease index (range: 0 to 8)
Predictors Model 1 Model 2 Model 3
TCD4N -0.143 (-0.22, -0.11) -0.185 (-0.31, -0.16) -0.17 (-0.24, -0.11)
TCD4CM 0.078 (0, 0.2) 0.133 (0.07, 0.24) 0.095 (0.02, 0.2)
TCD4EM 0.013 (0, 0.02) 0.002 (-0.01, 0.01) -0.003 (-0.02, 0)
TCD4TDEM 0 (-0.04, 0.02) 0 (-0.04, 0.02) -0.012 (-0.05, 0)
TCD4O 0.106 (0.07, 0.18) 0.088 (0.05, 0.17) 0.103 (0.06, 0.17)
TCD8N -0.064 (-0.12, -0.02) 0 (0, 0.07) 0 (-0.04, 0.02)
TCD8CM 0.142 (0.09, 0.22) 0.068 (0.02, 0.15) 0.103 (0.04, 0.18)
TCD8EM 0.012 (0, 0.03) 0.01 (0, 0.02) 0.01 (0, 0.03)
TCD8TDEM 0 (-0.03, 0.06) 0 (-0.02, 0.05) 0 (0, 0.05)
TCD8O -0.221 (-0.32, -0.18) -0.133 (-0.25, -0.1) -0.145 (-0.23, -0.09)
TO 0 (0, 0.07) 0 (0, 0.07) 0 (0, 0.06)
BN 0 (-0.1, 0) 0.01 (0, 0.07) 0.038 (0, 0.09)
BMIgD- -0.025 (-0.14, 0) 0 (-0.09, 0) 0 (-0.07, 0)
BMIgD+ -0.091 (-0.13, -0.03) -0.053 (-0.12, -0.02) -0.089 (-0.14, -0.04)
BO 0.082 (0.04, 0.21) 0.059 (0.02, 0.13) 0.032 (0, 0.1)
LYMPO 0.112 (0.06, 0.17) 0 (0, 0.08) 0.038 (0, 0.1)
Age - 0.037 (0.03, 0.04) 0.035 (0.03, 0.04)
Gender: Female - 0.145 (0.08, 0.23) 0.126 (0.06, 0.2)
Race: Black - - 0.254 (0.14, 0.36)
Race: Hispanic - - -0.175 (-0.31, -0.06)
Race: Other - - 0.05 (-0.13, 0.31)
Education: Lower secondary - - 0.317 (0.14, 0.53)
Education: Upper secondary - - -0.079 (-0.23, 0.12)
Education: Above upper secondary - - -0.246 (-0.4, -0.05)
CMV: Reactive - - 0.078 (-0.01, 0.18)
Intercept 2.442 (2.17, 2.68) -0.071 (-0.46, 0.23) -0.059 (-0.55, 0.37)
Self-reported health (range: 1 to 5)
Predictors Model 1 Model 2 Model 3
TCD4N -0.142 (-0.17, -0.06) -0.152 (-0.18, -0.06) 0 (-0.1, 0)
TCD4CM 0.035 (0, 0.11) 0.04 (0, 0.1) 0 (0, 0.05)
TCD4EM 0.016 (0.01, 0.02) 0.015 (0.01, 0.02) 0 (0, 0.01)
TCD4TDEM 0.012 (0, 0.03) 0.01 (0, 0.03) 0 (-0.02, 0.01)
TCD4O 0.075 (0, 0.11) 0.075 (0.02, 0.1) 0 (0, 0.09)
TCD8N 0.024 (0, 0.05) 0.027 (0, 0.05) 0 (-0.01, 0)
TCD8CM 0.044 (0, 0.08) 0.044 (0, 0.08) 0 (0, 0.1)
TCD8EM 0 (-0.01, 0.01) 0 (-0.01, 0.01) 0 (-0.01, 0.01)
TCD8TDEM 0 (-0.01, 0.03) 0 (-0.01, 0.03) 0 (0, 0.04)
TCD8O -0.101 (-0.14, 0) -0.097 (-0.14, 0) 0 (-0.1, 0)
TO 0 (-0.04, 0) 0 (-0.04, 0.01) 0 (-0.03, 0)
BN -0.016 (-0.06, 0) -0.016 (-0.06, 0) 0 (-0.06, 0)
BMIgD- 0 (-0.02, 0.03) 0 (-0.02, 0.02) 0 (-0.04, 0)
BMIgD+ -0.033 (-0.07, 0) -0.035 (-0.07, 0) 0 (-0.07, 0)
BO 0.036 (0, 0.07) 0.035 (0, 0.07) 0 (0, 0.05)
LYMPO 0.048 (0, 0.08) 0.053 (0, 0.08) 0 (0, 0.09)
Age - 0.002 (0, 0) 0.005 (0, 0.01)
Gender: Female - 0.073 (0.01, 0.13) 0.02 (-0.02, 0.1)
Race: Black - - 0.3 (0.21, 0.38)
Race: Hispanic - - 0.311 (0.22, 0.38)
Race: Other - - 0.331 (0.21, 0.48)
Education: Lower secondary - - -0.068 (-0.18, 0.05)
Education: Upper secondary - - -0.35 (-0.45, -0.23)

Table 3  Associations between 16 cell subsets of lymphocytes and health outcomes of chronic disease index, self-reported health, and 
frailty level
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correlation among them. This was also consistent with 
findings based on the network analysis that most sub-
set cells were independent when adjusting for all other 
subset cells. A closer examination of these nine logratios 
revealed that some subset cells, including TCD4N and 
LYMPHO, appeared multiple times, highlighting critical 
subset cells. TCD4N is pivotal for maintaining a respon-
sive and adaptable immune system [27, 31]. A decline in 
the number of TCD4N or functional impairment of these 
cells with age is a key factor in immunosenescence and 
affects the body’s ability to respond to new infections, 
generate effective memory responses, and maintain a 
balanced immune regulation [49]. This ultimately con-
tributes to increased susceptibility to infections, reduced 
vaccine efficacy, and a higher risk of autoimmunity and 
inflammation-related diseases in the elderly [31, 50]. 

These logratio measures were identified from the per-
spective of compositional data analysis, making it chal-
lenging to interpret their biological meanings, especially 
since they include unmeasured cell types. However, 

some measures are newly identified and worth further 
exploration. Specifically, the log(TCD4N/TCD8TDEM) 
accounted for 26.5% of the total variance, a higher value 
of which may suggest less advanced immunosenescence. 
In future HRS studies, researchers can examine how 
these measures relate to age-related health outcomes 
over time, such as cognitive health, kidney function, and 
geriatric syndromes.

In supervised learning, we identified several subset 
cells associated with chronic disease index, self-reported 
health, and frailty level on a cross-sectional basis. TCD4N 
was negatively associated with both a higher number of 
chronic diseases and poorer health, and TCD4CM and 
TCD4O were positively associated with these outcomes. 
This is consistent with findings from other studies, sug-
gesting these subset cells of TCD4 + may be useful bio-
markers to identify individuals at higher risk of chronic 
diseases [18, 51–54]. Subset cells of TCD8 + were found 
to be associated with chronic disease index but not self-
reported health. The direction of associations followed 

Chronic disease index (range: 0 to 8)
Predictors Model 1 Model 2 Model 3
Education: Above upper secondary - - -0.604 (-0.69, -0.49)
CMV: Reactive - - 0.047 (-0.05, 0.08)
Intercept 3.098 (2.93, 3.23) 2.929 (2.66, 3.13) 2.806 (2.58, 3.16)
Frailty level (range: 1 to 4)
Predictors Model 1 Model 2 Model 3
TCD4N -0.126 (-0.17, -0.08) -0.175 (-0.24, -0.14) -0.115 (-0.14, -0.06)
TCD4CM 0.044 (0, 0.13) 0.081 (0.01, 0.17) 0.035 (0, 0.1)
TCD4EM 0.021 (0.01, 0.03) 0.014 (0, 0.02) 0.003 (-0.01, 0.01)
TCD4TDEM 0.013 (0, 0.04) 0.011 (0, 0.03) -0.011 (-0.03, 0.01)
TCD4O 0.117 (0.07, 0.16) 0.104 (0.06, 0.15) 0.113 (0.06, 0.14)
TCD8N -0.019 (-0.05, 0) 0.02 (0, 0.06) 0 (-0.02, 0)
TCD8CM 0.103 (0.05, 0.14) 0.058 (0.02, 0.1) 0.102 (0.04, 0.13)
TCD8EM 0 (-0.01, 0.01) 0 (-0.01, 0.01) 0.001 (-0.01, 0.01)
TCD8TDEM 0 (-0.03, 0.03) 0 (-0.03, 0.03) 0 (0, 0.03)
TCD8O -0.211 (-0.26, -0.15) -0.141 (-0.2, -0.1) -0.144 (-0.17, -0.07)
TO 0 (-0.05, 0.02) 0 (-0.02, 0.03) 0 (-0.01, 0.02)
BN -0.042 (-0.1, 0) 0 (-0.05, 0.02) 0 (-0.03, 0.02)
BMIgD- 0 (-0.06, 0.02) 0 (0, 0.03) 0 (-0.02, 0.02)
BMIgD+ -0.051 (-0.08, -0.01) -0.035 (-0.08, 0) -0.06 (-0.09, -0.02)
BO 0.09 (0.05, 0.16) 0.063 (0.03, 0.1) 0.041 (0, 0.07)
LYMPO 0.058 (0.01, 0.1) 0 (0, 0.05) 0.036 (0, 0.06)
Age - 0.025 (0.02, 0.03) 0.023 (0.02, 0.03)
Gender: Female - 0.253 (0.19, 0.3) 0.23 (0.17, 0.28)
Race: Black - - 0.3 (0.23, 0.38)
Race: Hispanic - - 0.07 (-0.02, 0.17)
Race: Other - - 0.117 (-0.02, 0.27)
Education: Lower secondary - - 0.076 (-0.05, 0.19)
Education: Upper secondary - - -0.264 (-0.38, -0.16)
Education: Above upper secondary - - -0.552 (-0.66, -0.44)
CMV: Reactive - - 0.089 (0.02, 0.14)
Intercept 2.587 (2.41, 2.74) 0.773 (0.51, 0.96) 0.867 (0.57, 1.11)

Table 3  (continued) 
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Chronic disease index (range: 0 to 8)
Predictors Model 1 Model 2 Model 3
TCD4N/TCD8TDEM 0.038 (-0.01, 0.09) 0.043 (-0.01, 0.09) 0.03 (-0.02, 0.08)
LYMPO/TCD4N 0.322 (0.24, 0.4) 0.28 (0.2, 0.36) 0.261 (0.18, 0.34)
TCD4EM/TCD4O 0.005 (-0.01, 0.02) -0.005 (-0.02, 0.01) -0.009 (-0.02, 0)
LYMPO/TCD4CM -0.206 (-0.28, -0.13) -0.218 (-0.29, -0.15) -0.189 (-0.26, -0.12)
TCD4N/TCD4O -0.019 (-0.07, 0.03) -0.03 (-0.08, 0.02) -0.024 (-0.07, 0.03)
LYMPO/BN 0.021 (-0.02, 0.07) -0.039 (-0.08, 0) -0.033 (-0.08, 0.01)
TCD4TDEM/TCD8O 0.057 (0.03, 0.08) 0.05 (0.03, 0.07) 0.03 (0.01, 0.05)
TCD4N/TCD8N 0.114 (0.07, 0.16) -0.017 (-0.07, 0.03) 0.021 (-0.03, 0.07)
LYMPO/TCD8EM -0.023 (-0.04, -0.01) -0.018 (-0.03, 0) -0.018 (-0.03, 0)
Age - 0.04 (0.04, 0.04) 0.037 (0.03, 0.04)
Gender: Female - 0.147 (0.07, 0.22) 0.133 (0.06, 0.21)
Race: Black - - 0.232 (0.12, 0.34)
Race: Hispanic - - -0.187 (-0.31, -0.06)
Race: Other - - 0.052 (-0.15, 0.26)
Education: Lower secondary - - 0.317 (0.15, 0.49)
Education: Upper secondary - - -0.072 (-0.22, 0.08)
Education: Above upper secondary - - -0.241 (-0.39, -0.09)
CMV: Reactive - - 0.046 (-0.06, 0.15)
Intercept 2.421 (2.27, 2.57) -0.183 (-0.5, 0.13) -0.055 (-0.44, 0.33)
Self-reported health (range: 1 to 5)
Predictors Model 1 Model 2 Model 3
TCD4N/TCD8TDEM 0.021 (-0.01, 0.06) 0.02 (-0.02, 0.06) -0.001 (-0.04, 0.03)
LYMPO/TCD4N 0.112 (0.06, 0.17) 0.115 (0.06, 0.17) 0.061 (0.01, 0.12)
TCD4EM/TCD4O 0.013 (0, 0.02) 0.012 (0, 0.02) 0.002 (-0.01, 0.01)
LYMPO/TCD4CM -0.074 (-0.12, -0.02) -0.077 (-0.13, -0.03) -0.042 (-0.09, 0.01)
TCD4N/TCD4O -0.051 (-0.09, -0.02) -0.052 (-0.09, -0.02) -0.034 (-0.07, 0)
LYMPO/BN 0.02 (-0.01, 0.05) 0.019 (-0.01, 0.05) 0.041 (0.01, 0.07)
TCD4TDEM/TCD8O 0.04 (0.02, 0.06) 0.036 (0.02, 0.05) 0.015 (0, 0.03)
TCD4N/TCD8N -0.022 (-0.05, 0.01) -0.027 (-0.06, 0.01) 0.002 (-0.03, 0.04)
LYMPO/TCD8EM -0.004 (-0.02, 0.01) -0.004 (-0.02, 0.01) -0.004 (-0.02, 0.01)
Age - 0.003 (0, 0.01) 0.004 (0, 0.01)
Gender: Female - 0.075 (0.02, 0.13) 0.057 (0, 0.11)
Race: Black - - 0.278 (0.2, 0.35)
Race: Hispanic - - 0.301 (0.22, 0.38)
Race: Other - - 0.334 (0.19, 0.48)
Education: Lower secondary - - -0.063 (-0.18, 0.05)
Education: Upper secondary - - -0.336 (-0.44, -0.23)
Education: Above upper secondary - - -0.584 (-0.69, -0.48)
CMV: Reactive - - -0.004 (-0.08, 0.07)
Intercept 3.103 (3, 3.21) 2.929 (2.66, 3.13) 2.936 (2.67, 3.2)
Frailty level (range: 1 to 4)
Predictors Model 1 Model 2 Model 3
TCD4N/TCD8TDEM 0.041 (0, 0.08) 0.041 (0, 0.08) 0.02 (-0.02, 0.06)
LYMPO/TCD4N 0.185 (0.13, 0.24) 0.172 (0.11, 0.23) 0.129 (0.07, 0.19)
TCD4EM/TCD4O 0.016 (0.01, 0.02) 0.009 (0, 0.02) -0.001 (-0.01, 0.01)
LYMPO/TCD4CM -0.132 (-0.19, -0.08) -0.145 (-0.2, -0.09) -0.106 (-0.16, -0.06)
TCD4N/TCD4O -0.056 (-0.09, -0.02) -0.064 (-0.1, -0.03) -0.046 (-0.08, -0.01)
LYMPO/BN 0.021 (-0.01, 0.05) -0.01 (-0.04, 0.02) 0.007 (-0.02, 0.04)
TCD4TDEM/TCD8O 0.068 (0.05, 0.08) 0.055 (0.04, 0.07) 0.028 (0.01, 0.05)
TCD4N/TCD8N 0.048 (0.02, 0.08) -0.029 (-0.06, 0.01) 0.012 (-0.02, 0.05)
LYMPO/TCD8EM -0.01 (-0.02, 0) -0.007 (-0.02, 0) -0.007 (-0.02, 0)
Age - 0.026 (0.02, 0.03) 0.025 (0.02, 0.03)

Table 4  Associations between 9 selected logratios and health outcomes of chronic disease index, self-reported health, and frailty level
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our expectation that TCD8N was negatively associated 
with a higher number of chronic diseases and TCD8CM 
was positively associated with a higher number of 
chronic diseases.

Furthermore, our analysis showed that TCD4N and 
TCD8O were negatively associated with frailty levels 
across all models, whereas TCD4O and TCD8CM were 
positively associated. This pattern mirrors closely the 
associations observed with the chronic disease index, 
underscoring the robustness of our findings across dif-
ferent health outcomes. The consistent relationships 
between these subset cells and multiple health measures 
suggest that immunosenescence markers are closely 
related to various aspects of health in older adults. These 
results highlight the potential of specific T subset cells as 
indicators of health status, reinforcing the importance of 
immune profiling in aging populations.

The analysis based on logratios reinforced these asso-
ciations observed in the subset cell analysis, demon-
strating that specific immune composition patterns 
are related to multiple health outcomes. For example, a 
higher LYMPO/TCD4N ratio was associated with greater 
chronic disease burden, poorer self-reported health, 
and higher frailty, suggesting that a higher proportion of 
other lymphocytes relative to naïve TCD4 + cells reflects 
an aging immune profile linked to poorer health. Con-
versely, LYMPO/TCD4CM was negatively associated 
with health outcomes, indicating that a higher ratio of 
other lymphocytes over TCD4 + central memory cells 
may be protective against immune-related health decline. 
Both results based on subset cells and logratios showed 
that a decline in naïve TCD4 + cells relative to other lym-
phocytes may indicate an aging immune profile con-
tributing to poor health. Again, we observed findings of 
highly similar patterns based on both chronic disease 
index and frailty. Finally, by comparing R [2] values from 
models with different sets of predictors, we found that 
the selected nine logratios explained a similar amount 
of variation in the three health outcomes as the full set 
of 120 pairwise logratios. This confirms that the selected 

logratios effectively capture key aspects of immune com-
position while simplifying the model.

There were several major strengths of this study. First, 
it used a large U.S. population-representative sample 
(> 6,000 individuals) that implemented standardized 
immunophenotyping, providing a snapshot of T and B 
cells among older adults in the U.S. Second, the study 
expanded beyond individual subset cells or ratio mea-
sures to take the relationships among subset cells into 
consideration. It constructed a tree structure of avail-
able T and B subset cells and analyzed them as an inter-
connected system. Third, this study was pioneering in 
applying both unsupervised and supervised learning 
techniques to the complex cellular data of the Health and 
Retirement Study (HRS). These methods complemented 
each other and enabled a more nuanced understanding of 
the cellular landscape and its implications for health and 
disease.

The compositional and hierarchical tree framework 
developed in this study provides a methodological foun-
dation for analyzing immune phenotypes across cohorts 
with similar immunophenotyping data. By treating lym-
phocyte subset cells as interdependent components of 
the immune system, this approach enables a scalable 
framework that can facilitate cross-cohort comparisons 
and enhance the robustness of findings. Furthermore, 
the key measures of T and B subset cells identified in this 
study, such as naïve CD4 + T cells and central memory T 
cells, may serve as potential biomarkers of immunosenes-
cence and its association with health outcomes. Future 
research can leverage these methods in diverse demo-
graphic, geographic, and longitudinal contexts to validate 
and expand upon our findings. In resource-constrained 
environments, our study highlights specific immune bio-
markers that may be prioritized for a better understand-
ing of the biological processes of aging. This approach 
provides a foundation for advancing our understanding 
of immune system dynamics and their critical role in 
healthy aging and disease.

Our study also had several limitations. First, the cross-
sectional design of our study limits the ability to assess 

Chronic disease index (range: 0 to 8)
Predictors Model 1 Model 2 Model 3
Gender: Female - 0.258 (0.2, 0.31) 0.236 (0.18, 0.29)
Race: Black - - 0.298 (0.22, 0.37)
Race: Hispanic - - 0.068 (-0.02, 0.15)
Race: Other - - 0.121 (-0.02, 0.27)
Education: Lower secondary - - 0.076 (-0.04, 0.2)
Education: Upper secondary - - -0.259 (-0.37, -0.15)
Education: Above upper secondary - - -0.554 (-0.66, -0.45)
CMV: Reactive - - 0.051 (-0.02, 0.12)
Intercept 2.494 (2.38, 2.6) 0.645 (0.42, 0.87) 0.801 (0.53, 1.07)

Table 4  (continued) 
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causality or examine temporal trends in immunosenes-
cence and its associations with health outcomes. Having 
data from only one-time point in the HRS provides only 
a snapshot in time of immune cell distributions, which 
cannot fully capture the complex and dynamic nature 
of immune system aging. To address this limitation, we 
recommend that future waves of HRS prioritize the col-
lection of longitudinal immune data. Such an approach 
would enable the investigation of within-individual 
changes in immune profiles over time and their relation-
ship with the onset or progression of age-related diseases. 
Linking multiple time points of immunophenotyping 
data with comprehensive health records would offer a 
robust framework for identifying predictive biomarkers 
and understanding the long-term impacts of immunose-
nescence on health outcomes. In future work, we plan to 
extend this research by examining how changes in these 
immune subset cells over time relate to the development 
and progression of various health outcomes. Second, 
while our study offers valuable insights into the associa-
tions between lymphocyte subsets and health outcomes, 
it is limited by the scope of immune measurements avail-
able in the HRS. For example, the HRS dataset does not 
include certain immune biomarkers such as activation 
and exhaustion markers, cytokine profiles, and antibody 
titers, which are crucial for a comprehensive understand-
ing of immunosenescence. Future research should aim to 
incorporate these measures to provide a more detailed 
picture of immune aging and its health implications.

Third, our cross-sectional analysis of HRS highlights 
associations between immune cells and health outcomes 
but does not establish causality between them. Future 
research involving longitudinal data and more advanced 
causal methodologies will be essential for studying the 
underlying mechanisms of immunosenescence and its 
impact on aging. Such designs would capture dynamic 
changes in immune profiles, clarify temporal relation-
ships, identify causal pathways, and examine how modifi-
able factors (e.g., lifestyle and therapeutic interventions) 
influence immune aging and associated health risks. 
Fourth, a high proportion of participants (30.5%) lacked 
complete cell data. However, we found no meaningful 
sociodemographic differences between participants with 
and without complete data, suggesting that the missing 
data may not significantly bias the study’s overall find-
ings. Last, no specific information on immunosuppres-
sive treatments was available, which prevents us from 
controlling their potential effects on both immune func-
tion and health outcomes. In the future, it is possible to 
link HRS data to Medicare claims to examine if informa-
tion on immunosuppressive treatments can be retrieved.

In conclusion, we applied a system-based approach 
that combined unsupervised and supervised learn-
ing methods to analyze lymphocytes in a large U.S. 

population-based study. We found that the majority 
of subset cells are conditionally independent, and nine 
logratios effectively represent lymphocyte data. This indi-
cates their potential as useful indicators for developing 
measures of immunosenescence. Furthermore, we iden-
tified multiple subset cells and logratio measures asso-
ciated with different health outcomes, suggesting their 
systemic role in influencing health outcomes. This work 
is particularly relevant due to the increasing interest in 
targeting the peripheral immune system for aging-related 
diseases.
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