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Abstract 

As global life expectancy increases, research reveals a critical challenge in aging: the progressive deterioration 
of immune function, termed immunosenescence. This age-related immune decline is characterized by a com-
plex dysregulation of immune responses, which leaves older adults increasingly vulnerable to infections, chronic 
inflammatory states, and various degenerative diseases. Without intervention, immunosenescence significantly 
contributes to morbidity and mortality among the elderly, intensifying healthcare burdens and diminishing qual-
ity of life on both individual and societal levels. This review explores the essential role of zinc, a trace element criti-
cal for immune health, in mitigating the impact of immunosenescence and slowing the cascade of immunological 
dysfunctions associated with aging. By modulating the activity of key immune cells and pathways, zinc supplementa-
tion emerges as a promising approach to strengthen immunity, reduce oxidative stress, and counteract "inflammag-
ing," a state of chronic, low-grade inflammation that accelerates tissue damage and drives disease progression. Zinc’s 
involvement in cellular defense and repair mechanisms across the immune system highlights its ability to enhance 
immune cell functionality, resilience, and adaptability, strengthening the body’s resistance to infection and its abil-
ity to manage stressors that contribute to diseases of aging. Indeed, zinc has demonstrated potential to improve 
immune responses, decrease inflammation, and mitigate the risk of age-related conditions including diabetes, 
depression, cardiovascular disease, and vision loss. Given the prevalent barriers to adequate zinc intake among older 
adults, including dietary limitations, decreased absorption, and interactions with medications, this review underscores 
the urgent need to address zinc deficiency in aging populations. Recent findings on zinc’s cellular and molecu-
lar effects on immune health present zinc supplementation as a practical, accessible intervention for supporting 
healthier aging and improving quality of life. By integrating zinc into targeted strategies, public health efforts may 
not only sustain immunity in the elderly but also extend healthy longevity, reduce healthcare costs, and potentially 
mitigate the incidence and impact of chronic diseases that strain healthcare systems worldwide.
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Background
As the global population continues to age, the prevalence 
of age-related diseases such as cardiovascular disorders, 
neurodegenerative conditions, diabetes, and various 
types of cancer is expected to increase substantially. This 
demographic shift presents critical public health chal-
lenges, as older adults face not only the physical effects 
of these conditions but also an elevated vulnerability to 
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infection and immune dysfunction [1]. A key factor in 
this vulnerability is the age-related decline in immune 
function, a phenomenon known as immunosenescence, 
which affects both innate and adaptive parts of the 
immune system. Immunosenescence results in a compro-
mised immune response, impairing the body´s ability to 
defend itself against pathogens and adapt to new infec-
tions [2]. Compounding these effects is “inflammaging”, 
a state of chronic, low-grade inflammation that devel-
ops with age and further disrupts immune regulation. 
Inflammaging is associated with increased susceptibility 
to infections, autoimmune disorders and various age-
related diseases, creating a feedback loop that accelerates 
the breakdown of immune health and increases morbid-
ity and mortality risks among elderly [3, 4].

One of the essential elements in supporting immune 
health, particularly in the context of aging, is zinc, a trace 
element involved in numerous biological processes. Zinc 
plays a critical role in immune maintenance and regula-
tion, as it influences DNA synthesis, cell division, and 
antioxidant defense mechanisms, functions vital to the 
integrity and effectiveness of immune responses. Zinc is 
necessary for the optimal function of key immune cells, 
including, neutrophils, macrophages, natural killer (NK) 
cells, and lymphocytes, all of which contribute to a robust 
and responsive immune system [5]. Among older adults, 
zinc deficiency is a common issue, arising from factors 
such as reduced dietary intake, decreased absorption effi-
ciency, and altered metabolic requirements [6, 7]. This 
deficiency exacerbates immunosenescence and inflam-
maging, leading to increased inflammation, impaired 
immune defense, and a greater risk of chronic diseases.

The governmental German nutrition study conducted 
in 2008 revealed that 44% of men and 27% of women 
aged 65 to 80 years did not reach the recommended daily 
zinc intake [8]. Since then, dietary zinc intake recom-
mendations have been revised upward. When the 2008 
data are reanalyzed using the current guidelines estab-
lished by the European Food Safety Authority (EFSA) 
[9], it is estimated that approximately 75% of individuals 
aged 65 to 80 years in Germany do not reach the recom-
mended dietary zinc intake. These individuals are not 
definitively zinc deficient but are at greater risk for zinc 
deficiency or may have an inadequate zinc status, as zinc 
deficiency is defined by serum zinc levels below 70 µg/dL 
in fasting state [10]. Given this high prevalence of inad-
equate zinc status and likely also zinc deficiency with its 
adverse effect on immune function in aging populations 
[11], understanding and addressing zinc´s role in the 
immune system is critical to develop strategies that sup-
port healthier aging.

Recent research has shed light on the potential of zinc 
supplementation as a valuable approach to counteract 

immunosenescence and its associated health impacts. 
Zinc has been shown to modulate several crucial immune 
pathways, enhancing chemotaxis in neutrophils [12], 
promoting cytotoxic activity in NK cells [13], support-
ing macrophage phagocytic function [14], and preserving 
responsiveness of T and B cells [15, 16], which are essen-
tial components of adaptive immunity. Furthermore, 
zinc´s antioxidant properties contribute to its protective 
role against oxidative stress, a major driver of cellular 
aging and tissue damage in older adults [17]. Zinc also 
influences key gene expression pathways, including the 
nuclear factor kappa-light-chain-enhancer of activated 
B-cells (NF-κB) and peroxisome proliferator-activated 
receptor (PPAR) signaling, which are critical for man-
aging inflammatory responses and enhancing cellular 
resilience. By targeting these pathways, zinc can poten-
tially reduce systemic inflammation and oxidative dam-
age, thereby supporting immune cell health and function 
across both innate and adaptive immunity [18, 19].

Beyond its cellular effects, zinc´s influence has broader 
potential in impacting the aging process and addressing 
various age-related diseases. By correcting cellular dys-
function often seen with aging, zinc supplementation 
may help delay the onset and progression of conditions 
such as age-related macular degeneration [20], diabetes 
mellitus [21], wound-healing impairments [22], depres-
sion [23] and cardiovascular disease [24], ultimately 
improving health outcomes for older adults. Zinc´s 
ability to reduce inflammation and enhance immune 
response makes it a promising agent for mitigating these 
chronic diseases, which are prevalent in aging popula-
tions and often worsen with immune decline. Its antioxi-
dative and anti-inflammatory properties are essential for 
cellular protection and repair, aiding in the maintenance 
of tissue integrity and function across multiple organ sys-
tems as individuals age. In AMD, zinc may help to slow 
down retinal degeneration and preserve vision [20, 25]. 
In diabetes, it plays a role in insulin regulation and blood 
sugar control [21]. In wound healing it supports tissue 
regeneration and immune defense [22]. In depression it 
influences neurotransmitter balance and reduces inflam-
mation [26, 27], and in cardiovascular disease, zinc helps 
to reduce oxidative stress and vascular inflammation [17, 
28], which are central to preserving heart health in aging 
populations.

Unlike certain nutrients, such as fat-soluble vitamins 
or iron, which the body can store for extended periods, 
zinc lacks a dedicated storage system [29, 30]. This means 
the body depends on a steady dietary supply to main-
tain adequate levels for vital physiological functions [31]. 
This is especially concerning for vulnerable populations, 
such as older adults, who may face challenges in main-
taining adequate zinc intake, as they may experience 



Page 3 of 44Schulz and Rink ﻿Immunity & Ageing           (2025) 22:19 	

reduced appetite, changes in taste, dietary restrictions, 
poor dental status and age-related digestive issues that 
hinder nutrient absorptions [32–35]. Medications, such 
as penicillamine, tetracyclines, ACE inhibitors and angio-
tensin-2 receptor blockers, frequently prescribed in the 
aged population can also interfere with zinc absorption, 
further compounding the risk of deficiency. Thiazide diu-
retics increase urinary excretion of zinc [36–39].

Limited dietary variety and a decrease in overall 
nutrient intake can result in lower zinc levels among 
elderly individuals, creating a deficiency that has sig-
nificant implications for their immune health and over-
all well-being. Addressing zinc deficiency through 
dietary improvements and targeted supplementa-
tion could therefore play a critical role in maintain-
ing immune resistance and reducing the impact of 
immunosenescence.

This review offers a comprehensive examination of 
the role of zinc in supporting immune homeostasis and 
countering the effect of immunosenescence. By explor-
ing zinc´s influence on each component of the immune 
system, from innate responses mediated by neutrophils 
and macrophages to adaptive immunity regulated by T 
and B lymphocytes, this review underlines the impor-
tance of zinc for immune health in aging populations. 
Furthermore, the review delves into the clinical evi-
dence supporting zinc supplementation as a strategy to 
decrease the severity of age-associated inflammatory 
conditions and chronic diseases, highlighting its poten-
tial to improve quality of life for older adults. By analyz-
ing zinc´s molecular pathways, cellular interactions, and 
its broader impact on inflammation, this review aims 
to emphasize the significance of adequate zinc intake 
and illustrate how zinc supplementation could serve as 
a feasible, accessible, and effective approach to support 
immune health and enhance longevity among aging indi-
viduals (Fig. 1).

Zinc and its key proteins
Zinc is an essential trace element that plays a critical role 
in numerous biological processes, functioning both as a 
structural and catalytic cofactor. It is indispensable for the 
activity of more than 300 enzymes [40] and is involved 
in a wide range of cellular functions, including protein 
synthesis, DNA repair, and cell division [41]. Its cellular 
regulation is tightly controlled by zinc transporters, par-
ticularly the Zip (Zrt/Irt-like protein) family (Zip1-14/
SLC39 A1-14), which facilitates zinc influx into the cyto-
plasm, and the ZnT (Zinc Transporter) family (ZnT1-10/
SLC30 A1-10), which mediates zinc efflux to maintain 
homeostasis. Among the Zip family, ZIP4 is especially 
critical, as it is responsible for dietary zinc uptake in the 
intestine [42]. Mutations in Zip4 lead to acrodermatitis 

enteropathica, a rare but severe zinc deficiency disorder 
[43]. Zip7 is critical for intracellular zinc release from the 
endoplasmic reticulum into the cytosol and is essential 
for proper B-cell receptor signaling. A mutation in Zip7 
has been identified as the cause of an autosomal reces-
sive disorder, which is characterized by the lack of B cells 
and immunoglobulins, resulting in early-onset infec-
tions [44]. Other important ZIPs include Zip8, which is 
involved in T cell activation and IFN-γ expression [45], 
and Zip14, which plays a role in zinc mobilization during 
infection and acute-phase responses [46].

In contrast, the ZnT family primarily functions to 
export zinc out of the cytoplasm or into organelles. ZnT1 
is the most well-known member, as it is responsible for 
reducing intracellular zinc levels by exporting it across 
the plasma membrane [42]. ZnT2 is critical for zinc 
secretion into breast milk [47], while ZnT3 is essential in 
neurons for packaging zinc into synaptic vesicles, a pro-
cess vital for neurotransmission and brain function [27].

Metallothioneins (MTs), small cysteine-rich proteins, 
act as zinc-binding proteins to buffer and store zinc 
ions, protecting cells from oxidative stress and regulat-
ing zinc availability [48]. Zinc predominantly functions 
as a cofactor in enzymes, stabilizing protein structures 
through its interaction with specific amino acid residues, 
such as cysteine and histidine, thereby contributing to 
the secondary and tertiary of target proteins [49, 50]. It is 
essential in forming zinc finger motifs, which are critical 
for DNA binding and transcriptional regulation. Addi-
tionally, zinc ions can regulate enzymatic activity, DNA 
binding, and protein–protein interactions by inducing 
conformational changes in target proteins [49]. Unlike 
many cofactors that directly participate in redox reac-
tions, zinc’s biological role largely involves structural sta-
bilization and catalytic activity, making it indispensable 
in processes such as transcription, signal transduction, 
immune function, and apoptosis [5] (Tables 1 and 2).

Recommended zinc intake
Various international organizations, including the Euro-
pean Food Safety Authority (EFSA), the German Nutri-
tion Society (DGE), the National Institutes of Health 
(NIH) and the World Health Organization (WHO), pro-
vide guidelines for zinc intake to support optimal health 
(Table 3).

EFSA provides zinc intake recommendations that 
account for dietary phytate levels. Phytates are natu-
rally occurring compounds found in plant-based foods 
like grains, legumes, and seeds that bind to zinc in the 
digestive tract, reducing its absorption and bioavailabil-
ity. For men, the recommended intake ranges from 9.4 
mg per day with low phytate levels (300 mg/day) to 16.3 
mg per day with high phytate intake (1200 mg/day). 



Page 4 of 44Schulz and Rink ﻿Immunity & Ageing           (2025) 22:19 

For women, the recommendations range from 7.5 mg 
to 12.7 mg per day across the same phytate levels [9]. 
Similarly, DGE suggests zinc intakes of 11 mg per day 
for men and 7 mg per day for women when phytate lev-
els are low (330 mg/day). At higher phytate levels (990 
mg/day), these recommendations rise to 16 mg per day 
for men and 10 mg per day for women [89].

WHO bases its zinc recommendations on bio-
availability. In diets with high zinc bioavailability, men 
require 4.2 mg per day and women 3.0 mg per day. 
For moderate bioavailability, the recommended intake 
increases to 7.0 mg per day for men and 4.9 mg per day 
for women. Low bioavailability diets necessitate the 
highest zinc intakes: 14.0 mg per day for men and 9.8 

mg per day for women [90]. Meanwhile, NIH recom-
mend zinc intakes that are independent of phytate lev-
els, suggesting 11 mg per day for men and 8 mg per day 
for women [91].

Excessive zinc intake, however, can lead to toxic-
ity and significant health complications. Symptoms 
of acute zinc toxicity include gastrointestinal distress, 
such as nausea, vomiting, abdominal cramps, and diar-
rhea [92, 93]. Chronic high zinc consumption poses 
more serious risks, such as immune dysfunction and 
interference with copper metabolism. Zinc competes 
with copper for absorption in the gastrointestinal tract, 
and prolonged excessive zinc intake can lead to cop-
per deficiency. This condition may result in anemia, 

Fig. 1  Overview of Zinc Status and Its Impact on Immune Function in Elderly Individuals  Dysregulated immune responses and unhealthy 
increased reactions associated with zinc deficiency,:  Restored immune balance and improved immune function achieved through zinc 
supplementation, (↑): increased, (↓): decreased, (↔): balanced (a) In aged and zinc deficient individuals, immune system dysregulation 
is characterized by increased pro-inflammatory cytokine production (IL-1, IL-6, TNF-α) by antigen-presenting cells, enhanced Th2 responses, 
and reduced Th1 responses. This leads to decreased IFN-γ and IL-2 production, reduced immunoglobulin (Ig) class switching, unspecific B cell 
activation, and decreased T regulatory cell function, promoting an inflammatory state and impaired immune balance. b Zinc supplementation 
restores immune homeostasis by reducing inflammation, balancing Th1/Th2 responses, and maintaining normal cytokine levels and B cell function. 
The presence of zinc supports APC function, enhances regulatory T cell​ activity, and promotes a balanced immune response in elderly individuals, 
mitigating immunosenescence. Created in https://​BioRe​nder.​com

https://BioRender.com
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neutropenia, and neurological symptoms such as ataxia 
and peripheral neuropathy. Other symptoms of zinc 
toxicity include headaches, fatigue, and disruptions in 
lipid metabolism [92–94].

To minimize these risks, tolerable upper intake levels 
(ULs) for zinc have been established by various organi-
zations. EFSA and DGE set the UL at 25 mg per day for 
adults [9], while the NIH recommends a higher UL of 
40 mg per day [91]. However, the upper limit of 40 mg 
is likely too high, as studies indicate that negative side 
effects can occur below this threshold. A limit of 25 mg 

may be a more appropriate upper boundary for zinc 
intake [92].

To assess whether dietary zinc intake is sufficient 
or excessive, the use of a food questionnaire can be 
particularly valuable. This tool helps to estimate zinc 
intake by evaluating the frequency and quantity of 
zinc-rich or phytate-rich foods in the diet, providing 
an effective method for determining whether dietary 
adjustments are necessary to meet individual nutri-
tional needs [95]. Furthermore, an application acces-
sible at www.​zink-​app.​de enables individuals to assess 
their individual zinc status [96].

Table 1  Zinc transporters and their immunological relevance

Modified from Hara et al. 2017 [64]

Protein Distribution Immunological relevance References

ZnT1 Ubiquitous -  [51]

ZnT2 Widely expressed Mutations lead to low zinc in maternal milk and thereby neonatal 
zinc deficiency (humans only)

 [52, 53]

ZnT3 Brain -  [54, 55]

ZnT4 Ubiquitous Lethal milk mutant leads to less zinc in milk and neonatal zinc 
deficiency (mice only, human ZnT2)

 [56]

ZnT5 Ubiquitous Loss of function leads to impaired mast cell function  [57]

ZnT6 Widely expressed -

ZnT7 Widely expressed -  [58, 59]

ZnT8 Pancreas Autoantigen in type I diabetes mellitus  [60]

ZnT9 Brain, muscle kidney -  [61]

ZnT10 Small intestine, liver, brain -  [62, 63]

Table 2  Zip proteins and their immunological relevance

Modified from Hara et al. 2017 [64]

Protein Distribution Immunological relevance References

Zip1 Ubiquitous -  [65]

Zip2 Liver, ovary, skin, dendritic cell -  [66]

Zip3 Widely expressed Knockout leads to impaired T cell development  [67]

Zip4 Small intestine Mutation leads to acrodermatitis enteropathica  [43]

Zip5 Small intestine, kidney, pancreas -  [68]

Zip6 Widely expressed Necessary for T cell activation  [69, 70]

Zip7 Widely distributed Necessary for B cell development  [44]

Zip8 Widely expressed Knockout leads to decreased T cell activation and IFN-γ production,
Missense mutation is linked to Crohn´s disease

 [45, 71]

Zip9 Widely expressed -  [72]

Zip10 Widely expressed Regulates intensity of B-cell receptor signaling,
Essential for macrophage survival during inflammatory events

 [73, 74]

Zip11 Brain, gastrointestinal tract, stomach, 
cecum, colon, mammary gland, testis

-  [75–78]

Zip12 Brain, lung, smooth muscle testis -  [79–81]

Zip13 Hard and connective tissues -  [82, 83]

Zip14 Widely expressed Deletion results in the reduction of MHC-II on small intestinal epithelial 
cells; induced by proinflammatory signals

 [84–88]

http://www.zink-app.de
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Sex‑ and gender‑related differences in immunity
Immunosenescence differs significantly between sexes 
and genders, influenced by biological, hormonal, and 
environmental factors. Women generally exhibit stronger 
immune responses than men throughout much of their 
lives, a phenomenon attributed to differences in sex 
hormones and genetic factors [97]. Estrogen receptors 
are present on many immune cells, including neutro-
phils, macrophages, dendritic cells, natural killer cells, 
T lymphocytes, and B lymphocytes [98]. Estrogen, a 
key hormone in females, plays a critical role in enhanc-
ing immune function. It stimulates the production of 
immunoglobulin (Ig) G and IgM antibodies [99], whereas 
testosterone has the opposite effect, reducing the pro-
duction of these immunoglobulins [100]. Women also 
have higher numbers of CD4+ T cells [101], and estrogen 
increases the expression of interferon (IFN)-γ, an impor-
tant cytokine for immune activation [102, 103].

The phagocytic activity of neutrophils, macrophages, 
and other antigen-presenting cells is more pronounced 
in females than in males [104]. Additionally, chronic 
estradiol application promotes the expression of inter-
leukin (IL)−1β, IL-6, IL-12p40, and Inducible nitric oxide 
synthase (iNOS) in macrophages following lipopolysac-
charide (LPS) stimulation, further enhancing immune 
responses [105]. Women also produce significantly 
more IFN-α after Toll-like receptor (TLR) 7 activation 

compared to men [106, 107]. These factors collectively 
provide women with a robust capacity to combat infec-
tions and mount stronger immune responses.

The genetic advantage conferred by the presence of two 
X chromosomes in females further contributes to their 
immunological resilience. While the X chromosome does 
carry numerous immune-related genes, the biological 
implications are more nuanced than simple redundancy. 
To balance gene expression differences, one of the two X 
chromosomes in female cells undergoes X chromosome 
inactivation (XCI), a process that epigenetically silences 
most genes on the inactive X chromosome (Xi). Approxi-
mately 15%–30% of Xi-linked genes avoid this silencing, 
with patterns differing across cellular context, genetic 
background and developmental stages [108, 109]. This 
incomplete inactivation mosaicism results in a partially 
higher gene expression and provides a functional diver-
sity that can enhance immune responses and compen-
sate deleterious mutations. In contrast, males, with only 
one X chromosome, lack both the protective effects of 
mosaicism and the potential benefits of increased gene 
expression conferred by XCI escape. This may contribute 
to sex-based differences in immune function and disease 
susceptibility, while in females, the same mechanism may 
lead to heightened immune responses and an increased 
risk of autoimmunity [98, 110].

However, this sex-based advantage diminishes with 
age, particularly after menopause. The menopausal tran-
sition involves a significant decline in estrogen levels, 
which negatively impacts the immune system [111]. The 
protective effects of estrogen wane, leading to a reduc-
tion in immune cell populations. Postmenopausal women 
exhibit lower numbers of B lymphocytes and CD4+ T 
lymphocytes [112]. Chronic increases in inflammatory 
markers, including IL-1β, IL-6, and IL-10, are observed in 
serum during and after menopause [113–115]. Although 
IFN-γ levels initially rise during menopause, they even-
tually decrease to levels lower than those observed 
before menopause [113]. A comparison of the gene 
expression profiles of peripheral blood mononuclear 
cells (PBMCs) in elderly men and women with younger 
controls revealed that 48 signaling pathways are altered 
in females, compared to only 29 in males. This finding 
suggests that the aging immune system undergoes more 
extensive changes in women, particularly in T cell protec-
tion, which weakens, while inflammation increases [116].

This hormonal shift largely explains the narrowing 
of the immunological gap between postmenopausal 
women and men of the same age. Before menopause, 
men are more at risk for infections such as hepatitis, 
meningococcal disease, and pneumococcal disease due 
to their comparatively weaker immune responses. How-
ever, as women age and their immunological advantage 

Table 3  Comparison of zinc intake recommendations among 
different health organizations

RNI Recommended nutrient intake, UL Tolerable Upper Intake Level, EFSA 
European Food Safety Authority, DGE German Nutrition Society, WHO World 
Health Organization, National Institutes of Health
a Low availability: phytate–zinc molar ratio > 15, moderate availability: phytate–
zinc molar ratio between 5 and 15, high availability: phytate–zinc ratio < 5
b  for men

Bioavailability RNI (mg/day) UL

male female

EFSA [9] Phytate intake per day:

300 mg 9.4 mg 7.5 mg 25 mg

600 mg 11.7 mg 9.3 mg

900 mg 14.0 mg 11.0 mg

1200 mg 16.3 mg 12.7 mg

DGE [89] Phytate intake per day:

330 mg 11 mg 7 mg 25 mg

660 mg 14 mg 8 mg

990 mg 16 mg 10 mg

WHO [90] High bioavailabilitya 4.2 mg 3.0 mg 45 mgb

Moderate bioavailabilitya 7.0 mg 4.9 mg

Low bioavailabilitya 14.0 mg 9.8 mg

NIH [91] Independent from bioavail-
ability

11 mg 8 mg 40 mg
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diminishes and their risk for these infections increases 
to levels similar to those observed in men [117]. Hor-
mone replacement therapy has been shown to mitigate 
some of these immunological alterations. For example, 
it increases the number of B cells [118] and decreases 
chronically elevated pro-inflammatory cytokines, such as 
IL-6, through estrogen supplementation [119].

Gender also intersects with environmental and social 
factors that influence aging and immune function. Soci-
etal norms and behaviors may lead to differences in life-
style, access to healthcare, and exposure to chronic stress, 
all of which impact the immune system over time [120]. 
Furthermore, non-binary and transgender individuals 
may experience unique interactions between hormonal 
therapies, environmental factors, and aging. However, 
this area remains under-researched, highlighting the 
need for further studies.

In summary, while women generally possess stronger 
immune function than men due to hormonal and genetic 
advantages, this disparity diminishes after menopause as 
estrogen levels decline. Since this review focuses on the 
immunological changes in elderly individuals, particu-
larly postmenopausal populations, further exploration of 
sex differences will not be addressed in detail.

Changes in innate immunity
Granulocytes
Granulocytes, which include neutrophils, eosinophils, 
and basophils, play essential roles in the innate immune 
response. These cells primarily perform three key func-
tions: phagocytosis, degranulation and the production 

of cytokines and chemokines [121]. However, age-
related changes in neutrophil function have significant 
implications for the immune response (Fig. 2).

Neutrophil function is thought to be compromised in 
older adults, as indicated by increased morbidity and 
death caused by bacterial infections with advancing 
age [122]. Interestingly, while the total number of neu-
trophils increases during ageing [123], evidence sug-
gests that their functional capacity declines. Changes 
in the expansion of polymorphonuclear precursors to 
granulocyte-colony stimulating factor (G-CSF) have 
been observed in elderly individuals [124], although 
responses to other stimulants like IL-3 and granulo-
cyte–macrophage colony stimulating factor (GM-CSF) 
remain unchanged, ensuring sufficient neutrophilia 
during infection [125, 126].

The neutrophil-to-lymphocyte ratio (NLR) increases 
during aging. It has been recognized as a prognostic 
biomarker for assessing the progression of neoplastic 
diseases, predicting the onset of chronic degenerative 
conditions, and serving as a potential indirect indicator 
of healthy aging. Notably, the NLR typically increases in 
association with neoplastic diseases, reflecting systemic 
inflammation, while a decrease in NLR may be indica-
tive of healthy aging [123, 127, 128]. Consistent with 
its role in modulating immune function, plasma zinc is 
inversely associated with the neutrophil-to-lymphocyte 
ratio [129]. This suggests that zinc supplementation in 
the elderly may help restore a healthier neutrophil-to-
lymphocyte ratio, potentially improving immune func-
tion during aging.

Fig. 2   Functional Decline of Neutrophils in Aging and Zinc Deficiency. : Alterations due to aging, but not described in zinc deficiency, (Black) 
Alterations described in both, zinc deficiency and aging, (↑): increased, (↓): decreased Created in https://​BioRe​nder.​com

https://BioRender.com
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The functional decline in neutrophils is associated 
with several factors, leading to impaired apoptosis reg-
ulation. Older neutrophils are at a higher risk of apop-
tosis due to a lower responsiveness to factors such as 
G-CSF, IL-2, or tumor necrosis factor (TNF)-α that 
would normally prevent them from undergoing pro-
grammed cell death [130, 131]. This phenomenon may 
be linked to an altered ratio in anti-apoptotic and pro-
apoptotic proteins. For example, the Mcl-1/Bax ratio 
increases following GM-CSF stimulation in neutrophils 
from individuals of a younger age, whereas this ratio 
remains unchanged in neutrophils from older individu-
als [132, 133]. Zinc supplementation, of patients with 
down syndrome, which often goes along with zinc defi-
ciency, could reduce the number of apoptotic cells [134, 
135]. There is a significant age-related decline in oxida-
tive burst activity, particularly in older adults. In nona-
genarians, there is a higher expression of macrophage-1 
antigen (MAC-1), which is involved in neutrophil adhe-
sion and migration, compared to younger and middle-
aged individuals. Interestingly, neutrophil zinc content 
is higher in both nonagenarians and young adults com-
pared to middle-aged individuals, suggesting a poten-
tial age-related redistribution of zinc. Additionally 
nonagenarians exhibit increased superoxide dismutase 
(SOD) activity, which may represent a compensatory 
mechanism against oxidative stress [136].

Zinc influences various neutrophil functions, includ-
ing migration, chemotaxis, and the oxidative burst. Zinc 
deficiency impairs neutrophil chemotaxis, as shown 
in models of crush syndrome where zinc chelation 
reduced neutrophil infiltration and muscle injury, indi-
cating that adequate zinc levels are crucial for optimal 
neutrophil function migration [137]. Zinc deficiency 
has also been linked to inflammatory diseases, includ-
ing acute lung injury (ALI), characterized by excessive 
neutrophil recruitment and hyperactivation. However, 
administering zinc to mice 24 h before LPS-induced 
ALI significantly reduced neutrophil recruitment to the 
lungs, inhibited their hyperactivation, and consequently 
decreased lung damage [138].

In zinc-treated hemodialysis patients, granulocytes 
exhibit enhanced responsiveness to stimuli like zymosan-
activated serum, showing greater chemokinetic activity 
and motility [139]. Zinc also promotes chemotaxis by 
increasing the expression of IL-8 [12, 140]. This could 
be due to a Zn-induced inhibition of phosphatase activ-
ity, leading to Mitogen-activated protein kinase (MAPK) 
and activator protein-1 (AP-1) activation, resulting in the 
enhanced IL-8 expression [140]. Additionally, zinc influ-
ences GM-CSF receptor expression on immune cells dif-
ferently, increasing it on neutrophils but decreasing it on 
monocytes [141].

Neutrophils are critical first responders to infection or 
injury, and their ability to migrate toward chemotactic 
signals is essential for effective immune defense. Zinc, 
along with other trace elements like copper and nickel, 
enhances neutrophil chemotaxis, promoting their migra-
tion to sites of infection in a manner similar to the chem-
otactic factor N-formylmethionyl-leucyl-phenylalanine 
(fMLP). Zinc and nickel, in particular, double neutro-
phil migration towards fMLP, demonstrating a synergis-
tic effect in enhancing chemotaxis [142]. Another study 
shows that chelation of zinc with the membrane perme-
able chelator N,N,N′,N′-tetrakis(2-pyridinylmethyl)−1,2-
ethanediamine (TPEN) reduces granulocyte migration 
towards fMLP and IL-8 as well as phagocytosis, oxida-
tive burst and granule release. But the direct action of 
zinc as chemoattractant, as previously mentioned [142], 
was not observed. TPEN also inhibited the secretion of 
both chemotactic IL-8 and anti-inflammatory cytokine 
IL-1ra in response to LPS stimulation [12]. Consistent 
with these findings that zinc deficiency impairs neutro-
phil chemotaxis, it has been observed that chemotaxis is 
diminished in elderly individuals as well [143–147].

After they arrived at their destination, polymorpho-
nuclear neutrophils (PMN) have various options for 
neutralizing pathogens. The main ones are: Intracel-
lular killing through oxidative burst, phagocytosis and 
degranulation. Most of them are constrained during zinc 
deficiency [12, 142]. Given that zinc deficiency is more 
prevalent in the elderly, ensuring adequate zinc intake 
may be particularly important for maintaining neutrophil 
function and reducing susceptibility to infections in older 
adults.

While it is established that phagocytosis is significantly 
impaired in the context of elderly individuals [147–149] 
as well as zinc deficiency [12], the impact of zinc on oxi-
dative burst remains controversial. Zinc can both inhibit 
and enhance neutrophil respiratory burst, depending on 
the context. For instance, zinc inhibits oxidative burst 
in isolated neutrophils but enhances it in whole blood, 
suggesting that the cellular environment may influence 
zinc´s effect [150]. Moreover, zinc inhibits superoxide 
generation in peritoneal neutrophils at concentrations as 
low as 10 µM [151], while other studies report enhanced 
superoxide release and hydrogen peroxide production 
at higher zinc concentrations [152]. Zinc hydroxide has 
been found to induce both oxidative burst and phagocy-
tosis in rat neutrophils, further highlighting its dual role 
in modulating immune responses [153]. However, in this 
study, zinc treatment in PMNs did not improve phago-
cytosis or bacterial killing of Staphylococcus aureus and 
Staphylococcus epidermidis, but it did improve cell mem-
brane protection, potentially mitigating damage during 
immune responses [154]. In the context of aging, it has 
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become increasingly evident that oxidative burst activity 
declines with age [136, 148, 155, 156]. However, this phe-
nomenon appears to be context-dependent, as oxidative 
burst tends to decrease in suspended cells while exhibit-
ing an increase in adhesive cells [157].

Zinc may influence neutrophil degranulation and oxi-
dative metabolism by activating protein kinase C (PKC) 
and promoting myeloperoxidase (MPO) degranulation, 
leading to the production of reactive oxygen species 
(ROS), particularly hypochlorous acid, a potent antimi-
crobial compound [158, 159]. More recent studies show 
that zinc, at low concentrations (5–12.5 µM), activates 
NADPH oxidase via PKC, leading to superoxide radi-
cal production. Higher zinc concentrations facilitate the 
conversion of superoxide to hydrogen peroxide and 
HOCl through MPO, enhancing microbial killing [160].

Zinc´s role in NETosis, the process by which neutro-
phils release extracellular traps (NETs) composed of 
DNA, chromatin, and granule proteins to trap patho-
gens, is equally complex. PKC-mediated NET formation 
depends on ROS production by NADP oxidase. Zinc 
signaling is essential for NETosis, as zinc chelation by 
TPEN inhibits this process without affecting PKC activity 
or ROS production, suggesting zinc acts downstream of 
ROS [161]. Zinc supplementation increases NET release, 
although it does not alter NET efficacy in bacterial killing 

[162]. However, other studies show that zinc can inhibit 
NET release and degranulation, possibly by reducing cit-
rullinated histone H3 levels [163]. The impact of aging 
on NETosis is not well studied yet. Some studies suggest 
reduced NET formation in neutrophils from older indi-
viduals [164, 165], while other ones indicate an increase 
in NET production with age [166]. However, this height-
ened production may be associated with diminished 
functionality and efficiency, likely due to alterations in 
NET composition and impaired clearance mechanisms 
[166].

Hence, maintaining adequate zinc levels is vital for sup-
porting neutrophil function in the elderly, as these cells 
play a key role in the immune defense. Zinc enhances 
neutrophil activities such as migration, oxidative burst, 
and cytokine release, which tend to decline with age 
(Table 4).

Mast cells
Mast cells are known to be central to various pathologi-
cal processes that contribute to allergic reactions. Con-
ditions such as anaphylaxis, atopic eczema, and asthma 
are among the disorders where their role is particularly 
significant [181].

The total number of mast cells has been found to 
increase with age [182, 183], a pattern that bears 

Table 4  Comparison of granulocyte counts and functions in aged individuals and zinc deficient state

ZD Zinc deficiency, ↓: decreased significantly, ↘: probably decreased; ↔ : no effect, or effect unclear, -: no data available, ↗: probably increased; ↑: increased 
significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

Neutrophil granulocytes
Cell Number ↗ ↗  [123, 167, 168] ↑

 [130, 169, 170] ↔ 
 [171] ↔ 
 [172, 173] ↑

NLR ↑ ↑  [123] ↑  [129] ↑
Apoptosis ↑ ↗  [130, 131] ↑  [136] ↘

 [134, 135] ↑
Oxidative Burst ↓  ↔   [136, 148, 155–157] ↓  [150] ↓↑

 [151–153] ↓
Chemotaxis ↓ ↓  [143–147] ↓  [12, 137, 139, 

142] ↓
Phagocytosis ↓ ↓  [147–149] ↓  [12] ↓

 [163] ↘
NETosis ↓ ↓  [164–166] ↓  [161–163, 174] ↓

Basophil granulocytes
Cell Number ↓ ↑  [175] ↓  [172, 173] ↑
Cell Number (tissue resident) ↑ -  [176] ↑ -

Eosinophil granulocytes
Cell Number ↓ ↗  [168] ↓  [177] ↓

 [172, 173, 178] ↑
Cell number (tissue resident)  ↔  ↑  [168, 179] ↔   [180] ↑
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similarities to the response observed in zinc deficiency 
[184]. However, with advancing age, mast cells tend to 
enter a state of nonspecific preactivation, while their 
functional capacity upon stimulation becomes dimin-
ished [183]. This decline is reflected in the reduced fre-
quency of degranulation observed in mast cells of aged 
skin [185].

Zinc is a necessary component for both degranula-
tion as well as cytokine production in mast cells. The 
zinc chelator TPEN has been demonstrated to inhibit 
cytokine production, the secretion of lipid mediators 
and the release of histamine in mast cells. Conversely, 
zinc supplementation has been shown to reverse these 
inhibitory effects. Other metal chelators do not exert 
any influence on mast cell function [186]. Furthermore, 
mast cells express various zinc transporters, includ-
ing ZnT4, which facilitate the uptake and storage of 
zinc. This is particularly important in the context of 
inflammation, where mast cells can rapidly regain high 
levels of labile zinc after degranulation [187]. In addi-
tion, findings demonstrate that ZnT5 is necessary for 
the development of contact hypersensitivity and mast 
cell-mediated delayed-type allergic responses, though 
it is not involved in immediate passive cutaneous ana-
phylaxis [57]. Zinc also alters the cytokine production 
of mast cells. L-type calcium channels mediate zinc 
signaling in mast cells, influencing the production of 
proinflammatory cytokines such as IL-6 in response 
to various stimuli, including LPS and IL-33 [188], 
(Table 5).

Natural killer cells
Aging significantly affects the number, function, and phe-
notype of NK cells, which are critical components of the 
innate immune system. While no changes in NK progeni-
tor numbers have been observed in the peripheral blood 
or bone marrow [192], most studies report an increase in 
the total number of NK cells with age [193–195]. How-
ever, this increase is accompanied by a significant shift in 
NK cell subsets. There is a notable decrease in the per-
centage of CD56bright cells, which are primarily respon-
sible for cytokine secretion, including IFN-γ and TNF-α 

[195–197]. Conversely, there is an increase in CD56dim 
cells, which are predominantly cytotoxic [196–198].

Despite the increased number of cytotoxic CD56dim 
cells, age-related declines in NK cell cytotoxicity have 
been reported. These include impaired IFN-γ secretion, 
reduced expression of perforin and granzyme, and defec-
tive perforin release through degranulation [199–201]. 
Consistent with these findings, in vitro zinc chelation has 
also been shown to decrease NK cell cytotoxicity, which 
could be increased through zinc supplementation [202].

The ability of NK cells to recognize and kill target cells 
is also affected by changes in receptor expression. Aging 
results in reduced expression of activating receptors like 
NKp30 and NKp46, while the expression of inhibitory 
receptors like KLRG1 and killer cell immunoglobulin-like 
receptors (KIRs) increases [198, 201, 203]. Human leuco-
cyte antigen (HLA)-C-specific KIRs can bind zinc, and 
chelating zinc reverses their inhibitory function, suggest-
ing that zinc is essential for their activity. Zinc induces 
KIR-self-association, leading to the formation of mul-
timers, a phenomenon not observed with other divalent 
cations [204–207]. Zinc supplementation possibly helps 
restoring NK cell functionality in elderly by reversing the 
inhibitory effects of KIRs, promoting effective target rec-
ognition, and enhancing the immune response.

Zinc also plays a pivotal role in enhancing NK cell func-
tion. For instance, peptidoglycan monomer zinc signifi-
cantly improves cytotoxicity against NK-sensitive targets 
[208]. Studies show a positive correlation between NK 
cell numbers and vitamin D levels, while lifestyle factors 
like smoking and alcohol consumption negatively impact 
NK cell activity [209].

In elderly individuals, three months of zinc supple-
mentation could temporarily boost NK cell activity [13]. 
Aging is associated with higher expression of metal-
lothionein mRNA, reducing zinc bioavailability, and sup-
plementation can restore zinc levels, enhancing NK cell 
cytotoxicity [210, 211].

Zinc also affects NK cell cytokine production. After 
stimulation with phytohemagglutinin (PHA), zinc pro-
motes IFN-γ release and suppresses IL-10 release, shift-
ing the immune response towards a Th1 phenotype. This 

Table 5  Comparison of mast cell counts and functions in aged individuals and zinc deficient state

ZD Zinc deficiency, ↓: decreased significantly, ↘: probably decreased; ↔ : no effect, or effect unclear; -, no data available, ↗: probably increased, ↑: increased 
significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

Mast cells
Cell number ↑ ↗  [182, 189, 190] ↑  [184, 191] 

↗
Activation/Degranulation ↓ ↓  [185] ↓  [186] ↓
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cytokine shift, which enhances antiviral and antitumor 
immune responses, which are critical for the elderly to 
fight age-associated diseases, is linked to an increase in 
NK cell numbers, potentially explaining the enhanced 
IFN-γ production [212].

Zinc´s role in NK cell development is further high-
lighted by its effects on CD34+ progenitor cells. When 
cultured from both young and elderly donors, CD34+ 
cells from young individuals predominantly developed 
into CD56+CD16—NK cells, while cells from elderly indi-
viduals exhibited a CD56−CD16+ phenotype with lower 
cytotoxic activity. Zinc supplementation increased the 
number and cytotoxic activity of NK cells in both age 
groups, and notably, zinc induced the expression of the 
transcription factor GATA-3, which is essential for NK 
cell maturation [192]. These findings underline zinc´s 
importance for both the development and functional 
regulation of NK cells across the lifespan, which could 
support aging immune systems against infections and 
cancers (Fig. 3 and Table 6).

Macrophages
Macrophages arise from monocyte precursors in the 
bloodstream and differentiate into tissue-specific mac-
rophages upon entering tissues. Their primary functions 

include phagocytosis and regulation of inflammatory 
responses. However, macrophages in aged organisms 
exhibit several functional impairments, which contribute 
to a weakened immune system and increased suscepti-
bility to inflammation and infection. Notably, both aging 
and zinc deficiency are associated with an increased 
number of macrophages [217, 218] and monocytes [167, 
172, 219, 220].

As organisms age, macrophages display reduced 
phagocytic activity, compromising innate immune 
defense mechanisms. This impairment is associated with 
increased survival rates of pathogens, such as Strepto-
coccus pneumoniae, and a slight rise in pro-inflamma-
tory cytokine levels, as demonstrated in a mouse model 
[221]. Moreover, diminished phagocytic function in mac-
rophages is linked to delayed wound healing [222] and 
impaired clearance of apoptotic cells, which contributes 
to chronic inflammation in aged tissues [223].

Aging also affects macrophage polarization, the pro-
cess by which macrophages differentiate into either pro-
inflammatory M1 or anti-inflammatory M2 phenotypes 
(Shapouri-Moghaddam et al. 2018). In elderly organisms, 
the balance between these phenotypes may shift, leading 
to heightened inflammation. Patients with chronic liver 
disease often have zinc deficiency. In a mouse model of 

Fig. 3  Alterations in Natural Killer Cell Function Associated with Aging and Zinc Deficiency. : Alterations due to aging, but not described in zinc 
deficiency, : Alterations due to zinc deficiency, but not described in aging, (Black) Alterations described in both, zinc deficiency and aging, 
(↑): increased, (↓): decreased Created in https://​BioRe​nder.​com

https://BioRender.com
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liver fibrosis, zinc supplementation significantly sup-
pressed fibrosis and inflammation, reduced collagen dep-
osition, and decreased macrophage infiltration, together 
with inhibiting hepatic stellate cells. Zinc selectively 
inhibited M1 macrophage polarization and the produc-
tion of M1-related inflammatory cytokines, includ-
ing iNOS, monocyte chemotactic protein-1 (MCP-1), 
and TNF-α. Zinc´s anti-inflammatory effects were also 
linked to inhibition of Notch1 pathway, which regulates 
M1 macrophage polarization [224]. Moreover, both zinc 
deficiency and zinc supplementation in THP-1-derived 
macrophages were observed to enhance M1 polarization, 
while concurrently suppressing M2 polarization. The 
inhibitory effect of zinc supplementation on M2 polariza-
tion suggests benefits for the treatment of M2-dominated 
conditions, such as allergic asthma, or, more commonly 
observed in the aging population, cancer [225].

Mitochondrial dysfunction is another key factor in 
the decline of macrophage function with aging. NAD+, 
a cofactor critical for many enzymatic processes in 
macrophages, declines with age. Insufficient NAD+ 
synthesis leads to reduced mitochondrial respiration 
and phagocytosis, contributing to heightened inflam-
matory responses. In elderly human monocyte-derived 
macrophages (MDMs), increased oxygen consumption 
and decreased activity of mitochondrial complexes I 
and II have been observed, along with reduced NAD+ 
synthesis, which may explain the overall decline in 
immune function with aging [226].

Furthermore, macrophages from aged individuals 
exhibit impaired mitophagy, the process of recycling 
damaged mitochondria. This impairment leads to the 
accumulation of dysfunctional mitochondria, exacer-
bating oxidative stress and inflammation [227]. The 
decreased expression and signaling of TLRs, essen-
tial for recognizing pathogen-associated molecular 

patterns (PAMPs), further impair the ability of aging 
macrophages to phagocyte apoptotic cells and respond 
to pathogens. Reduced TLR signaling also diminishes 
cytokine secretion, further weakening the immune 
response [228].

Cytoplasmic, bioavailable zinc is essential for IL-1β 
production in activated human monocytes and mac-
rophages, acting downstream of glycolysis, which is 
induced by the mammalian target of rapamycin com-
plex 1 (mTORC1). Zinc enhances the phosphorylation 
of S6 kinase (S6 K) by mTORC1 through inhibiting pro-
tein phosphatase 2 (PP2 A), a phosphatase that dephos-
phorylates S6 K. The activity of PP2 A is increased in 
zinc deficiency [229, 230]. In patients with rheumatoid 
arthritis (RA), a common disease in the aged popula-
tion, decreased expression of the zinc transporter Zip8 in 
monocytes leads to lower intracellular zinc levels. Nota-
bly, there is a positive correlation between Zip8 expres-
sion and more severe RA clinical parameters [230].

Zinc transporters, particularly Zip proteins, also play a 
role in macrophage polarization. In a study on hepatocel-
lular carcinoma (HCC), Zip2 and Zip9 were upregulated 
in M2-polarized macrophages, while Zip9 was slightly 
downregulated in M1-polarized macrophages. Tumor-
associated macrophages derived from human liver cancer 
tissues exhibited decreased transcription of Zip9 com-
pared to adjacent, non-cancerous tissues. Dysregulated 
Zip expression, particularly Zip9, may influence immune 
responses in HCC, contributing to cancer pathogenesis 
and progression [231].

Zinc plays a critical role in macrophage-mediated 
pathogen defense. In a study on the fungal pathogen His-
toplasma capsulatum, macrophages treated with the glu-
cose analog 2-deoxy-D-glucose (2-DG) showed reduced 
exogenous zinc import, resulting in zinc starvation, 
which led to fungal death. This reduction in zinc import 

Table 6  Comparison of NK cell counts and functions in aged individuals and zinc deficient state

ZD: Zinc deficiency; ↓: decreased significantly; ↘: probably decreased; ↔ : no effect, or effect unclear; -: no data available, ↗: probably increased; ↑: increased 
significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

NK cells
Cell number ↑ ↗  [195, 201, 213, 214] ↑

 [215] ↗
 [172] ↔ 
 [216] ↑

CD56bright cells ↓ -  [195–197] ↓ -
CD56dim cells ↑ -  [196–198] ↑ -

Cytotoxicity ↓ ↓  [199–201] ↓  [13, 202, 
208] ↓

KIR expression/formation ↑ ↓ KIR expression:
 [198, 201, 203] ↑

Formation 
of KIR multim-
ers:
 [204–207] ↓
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was likely due to impaired zinc transporter activity, 
emphasizing the importance of zinc in controlling infec-
tion [232]. Additionally, zinc supplementation increased 
the population of peritoneal macrophages in Trypano-
soma cruzi infection models [233].

In chronic obstructive pulmonary disease, a disease 
with increased prevalence in aged individuals, zinc defi-
ciency hinders the clearance of apoptotic epithelial 
cells by alveolar macrophages, contributing to persis-
tent inflammation [234]. Zinc deficiency due to alcohol 
abuse similarly impairs alveolar macrophage function, 
reducing phagocytic activity and compromising immune 
response [235]. In alcohol fed rats, zinc supplementation 
could improve phagocytic function [236]. Moreover, zinc 
transporters such as Zip7 have a more direct impact on 
macrophage activity. In Zip7-knockdown THP-1 cells, 
phagocytosis is notably less efficient, through this defi-
ciency can be reversed by zinc supplementation. Further-
more, a deficiency in Zip7 shifts macrophage activation 
towards an M2 phenotype, as evidenced by increased 
expression of the M2 marker CD206 and reduced levels 
of the M1 marker NOS2, along with lower production 
of proinflammatory cytokines such as TNF-α and IL-6. 
Again, zinc supplementation effectively restores these 
defects, underlining the role of zinc, and specifically 
Zip7, in supporting phagocytosis and macrophage activa-
tion [14].

In addition to supporting their function, zinc is critical 
for preventing macrophage apoptosis. In a genetic mouse 
model, the loss of zinc transporter Zip10 leads to reduced 
zinc levels in macrophages, triggering p53-dependent 
apoptosis [74]. Comparatively, aged macrophages are 
more sensitive to apoptotic signals as well [237].

Zinc also plays a crucial role in the differentiation of 
myeloid cells, but its effects can vary depending on the 
context. For instance, low zinc levels can block the differ-
entiation of HL-60 cells into macrophages when induced 
by phorbol 12-myristate 13-acetate (PMA), an effect that 
can be partially reversed by adding external zinc [238]. In 
contrast, zinc deficiency appears to enhance the differen-
tiation and maturation of HL-60 cells into macrophages 
when stimulated by 1 α, 25-dihydroxyvitamin D D(3) 
(1,25D(3)) [218].

Zinc´s role in modulating oxidative stress and ROS 
production in immune cells is context dependent. In 
PBMCs, including monocytes, a reduction in zinc con-
centration, either through the use of the chelator TPEN 
or by removing zinc from the culture medium, leads to 
a significant increase in oxidative burst and phagocyto-
sis following infection with gram-positive S. aureus [239]. 
Similarly, in a study on E. coli-infected rats, zinc sup-
plementation increased in  vivo superoxide production. 

However, in  vitro, zinc inhibited superoxide production 
by macrophages derived from septic rats [240]. Addi-
tionally, zinc sequestration mechanisms can enhance 
ROS production in infected macrophages. For instance, 
in Histoplasma capsulatum-infected macrophages, GM-
CSF activation induces the sequestration of labile zinc 
through MT expression. Zinc exporters such as ZnT4 
and ZnT10 are upregulated, redirecting zinc away from 
phagosomes and into the Golgi apparatus. This zinc 
redistribution enhances H+ channel function within 
phagosomes and triggers ROS generation, which effec-
tively halts H. capsulatum replication and improves fun-
gal clearance [241].

Zinc also plays a crucial role in regulating inflamma-
tory signaling pathways in monocytes and macrophages. 
The activation of TLR4 in monocytes and granulocytes 
induces a rapid rise in intracellular zinc levels. Chelat-
ing this zinc signal with the membrane-permeable 
chelator TPEN effectively blocks the activation of LPS-
induced signaling pathways, including the p38 MAPK, 
extracellular-signal regulated kinases 1/2 (ERK1/2) and 
NF-κB pathways, ultimately inhibiting the release of pro-
inflammatory cytokines such as TNF-α [18]. Moreover, 
LPS-induced stimulation of macrophages activates the 
JAK-STAT1 pathway through the release of IFN-β, result-
ing in the expression of iNOS. In this context, free intra-
cellular zinc ions again serve as second messengers in 
LPS-dependent gene expression. Chelating zinc leads to 
an inhibition of both LPS- and IFN-β-mediated increases 
in STAT1 mRNA expression in RAW 264.7 macrophages 
[242]. Higher zinc concentrations, however, can suppress 
the release of other proinflammatory cytokines, such as 
IL-1β and TNF-α, by inhibiting phosphodiesterase activ-
ity, thus modulating the inflammatory response [243].

Zinc is essential for the production of IFNs, especially 
IFN-α, which plays a crucial role in antiviral immunity. 
Monocytes, alongside plasmacytoid dendritic cells, are 
major producers of IFN-α during viral infections, con-
tributing to its antiviral and immunomodulatory proper-
ties [244]. The age-related decline in IFN-α production 
[245], which increases the risk of viral infections, high-
lights the significance of findings by Cakman et al., who 
demonstrated that in  vitro supplementation of blood 
from elderly individuals with 15 µM zinc significantly 
enhanced IFN-α production [167].

In summary, zinc supports aging individuals by 
enhancing macrophage function, improving pathogen 
clearance, reducing chronic inflammation and aiding 
wound healing. It balances macrophage polarization, 
supports mitochondrial health and boosts immune sign-
aling pathways (Fig. 4 and Table 7).
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Dendritic cells
Dendritic cells (DCs) play a pivotal role in the immune 
system by serving as professional antigen-presenting 
cells (APCs). They are essential for initiating and regu-
lating immune responses. DCs capture antigens through 
surface receptors, process them into peptide fragments, 
and present these fragments as major histocompatibil-
ity complex (MHC)-peptide complexes on their surface. 

This process enables DCs to activate T cells, a critical 
step in the initiation of adaptive immune responses. Fur-
thermore, DCs possess the ability to follow chemotactic 
signals, guiding them to immune-related tissues such 
as lymph nodes, where they interact with T cells, fur-
ther underlining their crucial role in regulating immune 
responses [250].

Fig. 4  Macrophage and Monocyte Dysfunction in Aging and Zinc Deficiency. : Alterations due to aging, but not described in zinc deficiency, 
: Alterations due to zinc deficiency, but not described in aging, (Black) Alterations described in both, zinc deficiency and aging, (↑): increased, 

(↓): decreased Created in https://​BioRe​nder.​com

Table 7  Comparison of monocyte and macrophage counts and functions in aged individuals and zinc deficient state

ZD: Zinc deficiency; ↓: decreased significantly; ↘: probably decreased; ↔ : no effect, or effect unclear; -: no data available, ↗: probably increased; ↑: increased 
significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

Monocytes
Cell number ↗ ↗  [167] ↗

 [220] ↑
 [172, 219] ↑
 [246] ↓

ROS production ↑  ↔   [247] ↑  [239] ↑
 [240] ↑↓

IFN-α-production ↓ ↓  [245] ↓  [167] ↓
Macrophages

Cell number (tissue resident) ↑ ↘  [217] ↑  [248] ↗
 [218] ↑

Apoptosis ↑ ↑  [237] ↑  [74] ↑
Phagocytosis/Clearance ↓ ↓  [221–223] ↓  [234, 236, 

249] ↓
M1/M2-ratio ↑ ↑  [237] ↑  [224, 225, 

246] ↓

https://BioRender.com
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DCs can be divided into two primary subtypes: plas-
macytoid DCs (pDCs) and myeloid DCs (mDCs) [251]. 
Both subtypes have distinct roles in immune surveillance 
and response, with pDCs known for their ability to pro-
duce IFNs, while mDCs are more specialized in antigen 
presentation.

Aging has a profound impact on the function and pop-
ulation of DCs, particularly pDCs. In elderly individuals, 
there is a marked decline in the number of circulating 
pDCs. This decline is also associated with a decreased 
ability of these cells to migrate to lymph nodes, a crucial 
step for T cell activation [252, 253].

Elderly women exhibit a reduced number of circulating 
pDCs compared to younger women. Additionally, both 
pDCs and mDCs from older women show diminished 
responsiveness to TLR stimuli, including TLR7 and TLR8 
activation [254]. Additionally, old DCs express lower lev-
els of CCR7 and CCR9, resulting in decreased migratory 
activity, as demonstrated in studies on aged mice [255]. 
Despite these changes, the transendothelial migration 
of DCs remains unchanged compared to younger con-
trols. Furthermore HLA-DR expression is reduced in the 
peripheral blood DCs of elderly subjects, which leads to 
diminished antigen presentation and contributes to the 
age-related decline in immune responsiveness [256].

Aging also affects the cytokine production of pDCs. 
Compared to healthy adults, pDCs from elderly indi-
viduals produce fewer type I IFNs in response to stimuli 
such as CpG and influenza virus [257]. Moreover, elderly 
pDCs are less capable of stimulating CD8+ T cells to pro-
duce perforin and granzyme, which are crucial for cyto-
toxic activity, and they are less efficient in promoting 
IFN-γ secretion by CD4+ and CD8+ T cells [258]. These 
functional declines are compounded by dysfunctional 
signaling in TLR2 and TLR4 pathways, further impairing 
immune responses in the elderly [259].

Aligned with the concept of inflammaging, DCs 
develop a more pro-inflammatory phenotype as they 
age [260–262]. In this context, zinc plays a crucial role 
promoting the tolerogenic phenotype in DCs and sup-
pressing pro-inflammatory responses, thereby helping 
to restore a balance that is critical in aging immune sys-
tems [263, 264]. Zinc peroxide nanoparticles significantly 
induce a transition from immunogenic DCs to tolero-
genic DCs in a mouse model of rheumatoid arthritis, 
thereby reducing T-cell response which drives immune 
progression of rheumatoid arthritis. The zinc nanopar-
ticles reduced swelling of the ankle, improved mobility 
and pain reduction. However, there wase no prevention 
of bone destruction, but a reduced synovial inflamma-
tion [265]. Thereby zinc supplementation offers interest-
ing potential to counteract age-related declines in DC 
function.

When exposed to zinc in vitro, DCs derived from bone 
marrow exhibited a tolerogenic profile, characterized 
by reduced surface MHC-II expression and increased 
levels of tolerogenic markers such as Programmed 
Death-Ligand (PD-L) 1, PD-L2 and the tryptophan 
degrading enzyme, Indoleamine 2,3-dioxygenase (IDO). 
Zn also suppressed the proinflammatory response to 
TLR ligands. Zn supplementation also shifted the Treg-
Th17 balance towards Foxp3+ regulatory T cells (Tregs) 
[263, 264]. This shift can be attributed to Zn´s ability to 
inhibit STAT3 activation, which is crucial for Th17 dif-
ferentiation. All this was shown in vivo with Histoplasma 
capsulatum fungal infections as well [263]. In aging 
populations, this balance can mitigate excessive inflam-
matory responses while enhancing regulatory pathways, 
reducing the risk of chronic inflammatory diseases.

Zinc supplementation also exerts beneficial effects 
in  vivo. In zinc-deficient rats, zinc supplementation 
increased the number of DCs and mucosal cells produc-
ing secretory IgA while reducing the production of pro-
inflammatory cytokines IL-6 and IFN-γ. This increase in 
DCs was observed even in rats with normal serum zinc 
levels [266]. Zinc deficiency also leads to a decrease in 
epidermal transforming growth factor (TGF)-β1, which 
in turn reduces the number of epidermal Langerhans 
cells, another important subset of DCs [267, 268]. In 
elderly individuals, maintaining zinc homeostasis could 
help preserve DC numbers and their critical roles in 
mucosal immunity, a key aspect of protecting against 
infections.

Zinc also affects DC survival and apoptosis. In mice, 
low concentrations of zinc stimulate ceramide formation, 
leading to DC apoptosis through a mechanism involv-
ing acid sphingomyelinase. However, LPS treatment was 
found to protect DCs from apoptosis, demonstrating 
the complex interplay between zinc and immune sign-
aling [269]. Furthermore, LPS stimulation suppresses 
the expression of zinc importers (Zip6 and Zip10) while 
upregulating zinc exporters (ZnT1, ZnT4 and ZnT6), 
resulting in a net reduction of intracellular zinc. This 
decrease in intracellular zinc is associated with increased 
surface expression of MHC-II and CD86, key markers of 
DC maturation. This effect of LPS-induced zinc deple-
tion can be replicated using zinc-chelating agents, and 
zinc supplementation inhibits the movement of MHC-
II-positive vesicles, empathizing the importance of zinc 
homeostasis in DC function [270]. For aging individuals, 
supplementation may prevent these zinc-dependent dis-
ruptions, thereby sustaining optimal DC maturation and 
antigen presentation capacities.

DCs are also capable of synthesizing 1,25-dihydroxy 
vitamin D (1,25(OH)2D), which plays an essential role 
in the induction of Tregs. Animal studies suggest that 
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high concentrations of 1,25(OH)2D are necessary to 
generate Tregs when supplemented, but this can lead 
to adverse side effects such as hypercalcemia. How-
ever, overexpression of 1α-hydroxylase in DCs enables 
production of 1,25(OH)2D in Treg-inducing concen-
trations without causing hypercalcemia. Interestingly, 
the addition of zinc in non-toxic concentrations sig-
nificantly enhances the Treg-inducing capacity of DCs, 
offering a promising therapeutic strategy for immune-
mediated diseases [271].

In summary, zinc deficiency worsens age-related 
declines in DC function, leading to reduced antigen 
presentation, impaired cytokine production, and weak-
ened immune response. Effects that can possibly be 
improved by zinc supplementation (Table 8).

Changes in the adaptive immune system
T cells
Immunosenescence leads to significant changes in T 
cell populations and their effectiveness. This process 
involves a decrease in naïve T cells and an accumulation 
of memory T cells, impairing the immune system´s abil-
ity to respond to novel or fast-mutating pathogens, such 
as influenza virus while preserving responsiveness to 
previously encountered ones [283]. More specifically, in 
the periphery of aged people there is a rise in CD45R0+ 
memory T cells and a reduction in CD45RA+ naïve T 
cells [284].

One of the primary reasons for the decline in naïve T 
cells is thymic involution, a process where the thymus, 
responsible for producing new T cells, shrinks over time, 

thereby compromising the adaptive immune response 
[285–287].

Thymic epithelial cells also secrete thymulin, a hor-
mone essential for T cell development and regulation, 
which depends on zinc to fold into its active form. Zinc 
acts as a cofactor, stabilizing thymulin’s structure and 
ensuring its proper function in immune regulation. 
Without zinc, thymulin remains biologically inactive, 
impairing its role in T-cell differentiation and immune 
modulation [288]. As thymulin production decreases 
with age, the overall effectiveness of T cells in immune 
responses is further reduced [289, 290]. Thymic atrophy 
in the elderly is often associated with zinc deficiency, 
contributing to reduced activity of thymulin, lower 
production of naïve T cells and increased apoptosis in 
thymocytes [291, 292]. One reason for the increased 
probability of apoptosis in zinc deficient thymocytes is 
the higher expression of the protein p56lck [293, 294]. In 
a mouse model, zinc supplementation has been shown to 
reverse certain age-related thymic defects and enhance 
thymopoiesis [295, 296]. Additionally, mild zinc defi-
ciency in humans and mice has been shown to reduce 
serum thymulin activity, which can be restored through 
zinc supplementation both in vivo and in vitro [297]. In 
aged mice, zinc supplementation has been observed to 
enhance thymulin secretion, potentially contributing to 
improved thymic function [290, 298].

Aging is also associated with an increase in mitochon-
drial content in memory CD4+ T cells, which leads to 
the generation of ROS and subsequently promotes the 
expression of proinflammatory cytokines [299]. This rise 

Table 8  Comparison of dendritic cell counts and functions in aged individuals and zinc deficient state

ZD: Zinc deficiency ↓: decreased significantly; ↘: probably decreased; ↔ : no effect, or effect unclear;

-: no data available, ↗: probably increased; ↑: increased significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

Dendritic cells
Immunogenic/tolerogenic ratio ↑ ↑  [260–262] ↑  [263, 264] ↑
Antigen presentation  ↔  ↑  [258, 272] ↔   [270, 273] ↑

Plasmacytoid dendritic cells

Cell number ↘ -  [274–276] ↓
 [220] ↔ 

-

IFN production ↓ ↓  [257, 258] ↓  [266] ↓
T cell stimulation ↓ ↑  [258, 259] ↓  [270] ↑

Myeloid dendritic cells

Cell number ↘ ↓  [274, 276] ↓
 [220, 275] ↔ 

 [277] ↓

Langerhans cells
Cell number ↓ ↓  [278–280] ↓  [268, 281, 

282] ↓
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in proinflammatory cytokines is particularly evident in 
memory T cells, which display a senescence- associated 
phenotype [300–302].

Zinc supplementation in zinc-deficient elderly indi-
viduals, such as those in nursing homes, has been shown 
to improve immune function by enhancing anti-CD3/
CD28 and PHA-stimulated T cell proliferation, as well as 
increasing the number of peripheral T cells [303].

Zinc is also critical for the activation of T cells. Follow-
ing T cell receptor (TCR) activation, zinc ions enter the 
cell via zinc transporters such as Zip6 and Zip8, facilitat-
ing the signaling pathways necessary for T cell activation 
and proliferation [69, 304]. This influx of zinc enhances 
the production of proteins required for TCR signal-
ing, such as lymphocyte protein tyrosine kinase (LCK) 
and PKC, which are essential for downstream immune 
responses [305, 306].

Zinc deficiency can severely impair immune responses. 
It leads to reduced T cell proliferation and diminished 
cytokine production such as IL-2 and IFN-γ [307, 308], 
a condition seen in aged individuals as well [309, 310], 
resulting in an increased susceptibility to infections.

There are also specific alterations in T cell subsets 
associated with aging. One notable change is the accu-
mulation of CD8+ T cells that express senescence mark-
ers such as CD57 and the T-cell immunoreceptor with 
Ig and ITIM domains (TIGIT) [311]. Additionally, aged 
CD70+ T cells often exhibit an over-activated phenotype, 
characterized

 by elevated levels of inhibitory receptors, including 
programmed cell death protein (PD-1), 2B4, and lym-
phocyte-activation gene 3 (LAG-3) [312]. These over-
activated T cells demonstrate increased susceptibility to 
apoptosis and produce higher levels of cytokines. This 
heightened susceptibility to apoptosis is not unique to 
aged CD70+ T cells. T cells in general are more prone to 
apoptosis [313, 314]. Furthermore, zinc deficiency exac-
erbates apoptosis in T cell progenitors by disrupting the 
Bcl-2/Bax pathway, leading to elevated rates of cell death. 
Conversely, zinc supplementation can mitigate this effect 
by inhibiting caspase-3, −6, −7 and −8, thereby reducing 
apoptosis [315].

In addition to its impact on T cell function, zinc plays 
a crucial role in regulating the balance between T helper 
cell subsets, particularly the Th1/Th2 ratio. As indi-
viduals age, the immune response shifts towards a Th2-
dominant profile, reducing the body´s ability to combat 
intracellular pathogens [15, 316]. Zinc supplementation 
can restore this balance by enhancing Th1 responses, 
by increasing the production of Th1 cytokines such as 
IFN-γ and IL-2 and promoting the expression of the 
transcription factor T-bet [229, 317]. Conversely, zinc 
deficiency shifts the immune response further towards 
a Th2-dominant profile, going along with the reduction 
of Th1 cell cytokines, such as IFN-γ, IL-2 and TNF-α. 
Interestingly Th2 cytokines like IL-4, IL-6 and IL-10 
remained unchanged [318]. In cases of zinc deficiency, 
even short-term supplementation of in average 6 days 

Fig. 5  T Cell Dysregulation in Aging and Zinc Deficiency. : Alterations due to aging, but not described in zinc deficiency, : Alterations 
due to zinc deficiency, but not described in aging, (Black) Alterations described in both, zinc deficiency and aging, (↑): increased, (↓): decreased 
Created in https://​BioRe​nder.​com

https://BioRender.com
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can significantly improve immune function by decreasing 
CREMα expression and thereby increasing IL-2 produc-
tion [309]. Zinc supplementation in elderly individuals 
has been shown to reduce the incidence of infections by 
increasing the numbers of CD4+ T cells and cytotoxic 
T lymphocytes through enhanced synthesis of IL-2 and 
soluble IL-2 receptor (sIL-2R) [319], (Fig. 5 and Table 9).

Proton-pump inhibitors, such as pantoprazole, are 
commonly used to treat various gastrointestinal dis-
eases in elderly patients. However, pantoprazole has 
been shown to reduce the expression of zinc transporter 
Zip8 and increase the expression of the transcription fac-
tor CREMα. This alteration results in downregulation of 
IFN-γ and IL-2 expression, leading to an increased risk of 
infections [320].

The role of zinc in modulating Tregs is another key fac-
tor in its immunoregulatory effects. Tregs are responsi-
ble for maintaining immune homeostasis by suppressing 
overactive immune responses, preventing autoimmune 
reactions, and ensuring tolerance to self-antigens [321]. 
The levels of Tregs in the circulating blood are dimin-
ished in older individuals [322]. During zinc deficiency, 
there is an increase in Treg cell numbers. However, these 
cells are likely nonfunctional as they express low levels of 
microRNS-146, which is critical for their proper function 
upon stimulation [323].

Zinc promotes Treg differentiation by inhibiting the 
activity of Sirtuin 1 (Sirt1), an enzyme that deacetylates 
Foxp3, a modification that leads to its ubiquitination and 
subsequent degradation. Foxp3 is a key transcription fac-
tor for Treg development [324]. Moreover, treatment of 
mixed lymphocyte cultures (MLC) with zinc and TGF-β1 
triggers intracellular zinc signaling, which, in combina-
tion with increased Smad2/3 activation, enhances Foxp3 
expression. This results in a mitigated allogenic immune 
response in MLC, suggesting that zinc can elevate Treg 
cells in adverse immune reactions [325]. Furthermore, 
an increased number of Tregs in PBMCs from atopic 
individuals is associated with the suppression of allergic 
hyperresponsiveness (Th2-mediated) and allogenic reac-
tivity (Th1-mediated) [326].

Vitamin D3 and zinc, when administered together, 
more effectively induce regulatory T cells and suppress 
IFN-γ production in mixed lymphocyte cultures com-
pared to treatment with either Vitamin D3 alone. Vitamin 
D3 enhances intracellular zinc levels by upregulating the 
expression of Zip13. Consequently, lower concentrations 
of Vitamin D3 and zinc may serve as effective treatment 
options, thereby minimizing the side effect associated 
with higher doses of Vitamin D3 [327].

The role of zinc is not universally beneficial. In the 
context of cancer, high dietary zinc intake has been 
shown to promote tumor progression by fostering a 

pro-tumorigenic environment mediated by T cells. 
Conversely, zinc deficiency or chelation of tissue zinc 
improves anti-tumor immunity and enhances responses 
to immunotherapies such as αPD-1, particularly in mela-
noma models [328].

Moreover, zinc supplementation has been shown to 
reduce the vulnerability of tumor cells to TNF-dependent 
lysis mediated by CD8+ T cells, whereas zinc chelation 
enhances this susceptibility. Additionally, the loss of the 
transcription factor CBFβ in tumor cells disrupts zinc 
homeostasis pathways, further impairing their respon-
siveness to TNF-dependent cytotoxicity [329].

Increased Th17 cell numbers have been observed in 
the elderly [322]. In both mouse models of autoimmune 
encephalomyelitis and human subjects, supplementa-
tion with zinc aspartate has been found to suppress the 
development of Th17 cells through the degradation of 
STAT-3, which may help alleviate the impact of Th17-
driven autoimmune disorders [330, 331]. Zinc also inhib-
its the differentiation of Th17 cells by interfering with the 
IL-6/STAT3 signaling pathway and preventing the phos-
phorylation of IL-1 receptor-associated kinase 4 [332]. 
Moreover, zinc suppresses Th17 cells by inhibiting glu-
taminolysis, which serves as the primary energy source 
for these cells, thereby lowering the risk of autoimmune 
diseases, such as autoimmune encephalomyelitis [333]. 

B cells
The overall number of B cells remains relatively stable 
throughout most of human lifespan, with a decline only 
observed in advanced old age, long after the initial signs 
of immune system inefficacy become apparent [345, 346]. 
In contrast, murine studies show that while the total 
number of peripheral B cells in mice remains consistent 
as they age, the influx of new naïve B cells into peripheral 
tissues decreases in older mice. This decline is attributed 
to the slower turnover rate of splenic B cells in aged mice, 
allowing them to survive longer and signaling to newly 
generated B cells that peripheral niches are fully occupied 
[347, 348]. Some researchers also suggest that there is a 
reduced ability of naïve B cells from older mice to popu-
late peripheral compartments [349]. The reduced influx 
of new B cells is also due to bone marrow cells having a 
reduced capacity for B cell generation in culture com-
pared to bone marrow of younger mice [350]. Although 
aging does not inherently alter individual hematopoi-
etic stem cells (HSCs), it does shift the clonal composi-
tion of the HSC pool. In aged mice, there is a decrease 
in lymphoid-biased HSCs and an accumulation of long 
lived myeloid-biased HSCs, reducing B cell production 
capacity [351, 352]. Additionally, the absolute number of 
B cell precursors in the bone marrow declines with age, 
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particularly during adolescence [353], though B lym-
phopoiesis continues throughout adulthood [354]. Also, 
in vitro studies indicate that the responsiveness of pro-B 
cells to IL-7 is compromised in aged individuals [355], 
and IL-7 release from stromal cells in the bone marrow 
also declines with age [356], leading to reduced pro B-cell 
proliferation.

In elderly humans, there is a significant decline in 
CD27dull memory B cells, a subset crucial for bridging 
innate and adaptive immunity. Instead, highly differenti-
ated, antigen-selected CD27bright memory cells dominate. 
After in  vitro stimulation with CpG, B cells from older 
individuals produce significantly lower levels of IgM and 
IgA antibodies compared to younger individuals, high-
lighting a diminished capacity to respond to novel path-
ogens while maintaining responsiveness to frequently 
encountered antigens [357]. This is empathized by the 
decrease of naïve B cells and increase of memory B cells 
in elderlies [358]. Furthermore, there is an increase in 
memory B cells lacking the activation marker CD27 in 
peripheral blood of elderly individuals, a phenomenon 
also observed in chronic viral infections and autoimmune 
diseases such as systemic lupus erythematosus [359, 360].

There is also a decline in the IgM memory compart-
ment with age [361], which may contribute to a weakened 
immune response to polysaccharide antigens, increasing 
susceptibility to bacterial infections like pneumococ-
cal disease [362–364]. This is particularly relevant since 
the reduction of IgM levels in serum has been linked to 
decreased opsonophagocytic function [365].

In human studies examining the VH chain repertoire 
following pneumococcal vaccination, older adults exhibit 
reduced oligoclonality and a lower frequency of somatic 
mutations compared to younger individuals [366]. A 

decline in activation-induced cytidine deaminase (AID), 
necessary for class switch recombination (CSR) and 
somatic hypermutation, is observed in elderly individu-
als. This decrease is attributed to lower stability of E47, 
a transcription factor for AID, and E47 mRNA. Higher 
levels of microRNAs, specifically miR-155 and miR-16, in 
aged B cells may inhibit AID and E47 expression, reduc-
ing protein synthesis [367]. Additionally, in vitro studies 
have demonstrated that zinc chelation inhibits AID activ-
ity, suggesting that age-associated changes in zinc home-
ostasis might further exacerbate the reduction in AID 
functionality [368]. However, Banerjee et  al. [369] dem-
onstrated that somatic hypermutation rates are similar 
in both young and elderly individuals, suggesting that the 
increased number of mutations in Ig genes seen in older 
adults [370] likely results from cumulative exposure over 
time rather than an inherently altered mutation process.

Research on repeated influenza vaccinations in elderly 
individuals suggests that memory B cell generation 
remains intact, though serum antibody titers increase 
less after vaccination compared to younger controls. 
Despite this impairment in antibody production, protec-
tive titers were still achieved.

 [371]. A reason for the reduced production of anti-
bodies could be the notable decline in the presence of 
long-lived antibody-secreting plasma cells that recircu-
late within the bone marrow in older adults [372]. Fur-
thermore, antibodies generated in elderly individuals are 
often less protective than those produced by younger 
ones. This is demonstrated by a decreased ability to 
opsonize bacteria-derived polysaccharides in  vitro after 
vaccination [373].

Finally, aging induces a shift in baseline serum antibody 
specificity, with an increased prevalence of autoreactive 

Table 9  Comparison of T cell counts and functions in aged Individuals and zinc-deficient state

ZD: Zinc deficiency; ↓: decreased significantly; ↘: probably decreased; ↔ : no effect, or effect unclear; -: no data available, ↗: probably increased; ↑: increased 
significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

T cells
Thymus size ↓ ↓  [285–287] ↓  [334, 335] ↓
Secretion/activity of thymulin 
by thymic epithelial cells

↓ ↓  [289, 290] ↓  [290, 292, 297, 
298] ↓

Apoptosis ↑ ↑  [313, 314] ↑  [315] ↑
Naïve T cells: Cell number ↓ ↘  [308, 336–339] ↓  [308] ↓

 [315, 340] ↘
Memory T cells: Cell number ↑ ↑  [338, 341, 342] ↑  [343] ↗

 [344] ↑
Tregs: Cell number ↓ ↘  [322] ↓  [323] ↗

 [324] ↓
Th1/Th2 ratio ↓ ↓  [15, 316] ↓  [15, 318, 343] ↓
IL-2 and IFN-γ production ↓ ↓  [309, 310] ↓  [307–309, 318] ↓
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antibodies, such as those targeting cardiolipin, DNA, and 
antinuclear antibodies (ANA), as well as rheumatoid fac-
tor. While this rise in autoreactivity is associated with 
autoimmune diseases like vasculitis, it does not necessar-
ily result in immune pathology [374].

Zinc deficiency reduces the population of naïve B cells, 
which are essential for adaptive immunity [219]. This 
reduction is largely due to the disruption of lymphopoie-
sis, as zinc deficiency leads to a significant decline in 
pre-B cells [291]. Further research has shown that in 
zinc-deficient mice, while T-cell lymphopoiesis is signifi-
cantly reduced, B cell development and maturation in the 
bone marrow are less affected [375]. However, the reduc-
tion in pre-B cells during zinc deficiency mirrors the 
effect observed in T cells and is associated with altered 
glucocorticoid metabolism and increased apoptosis, 
highlighting shared mechanisms of immune impairment 
under zinc deficiency [376].

The B cell receptor (BCR), essential for both immature 
and mature B cell activation and proliferation, is another 
area where zinc plays a pivotal role. The zinc transporter 
Zip10 is critical for modulating BCR signal strength [377] 
and preventing apoptosis in B cells, indicating zinc´s 
influence on humoral immunity through its regulation of 
BCR signaling [378].

Zinc deficiency also affects intracellular signaling path-
ways necessary for B cell function. Specifically, it hinders 
the activation of protein PKC in response to mitogens, as 

zinc deficiency prevents PKC´s translocation to the cell 
membrane. This impairment leads to a reduced prolif-
erative response in B lymphocytes [379]. Moreover, zinc 
deficiency alters cytokine-mediated signaling, enhanc-
ing B cell proliferation in response to IL-6 and IL-2 but 
reducing it following IL-4 stimulation. This results in 
decreased STAT6 phosphorylation in IL-4 pathways and 
increased STAT3 phosphorylation in IL-6 pathways, 
emphasizing the role of zinc in maintaining balanced 
immune responses [380].

Furthermore, regulatory B cells (Bregs), identified as 
CD19+IL-10+ B cells, play crucial role in modulating 
immune responses by secreting the anti-inflammatory 
cytokine IL-10. By fostering an anti-inflammatory envi-
ronment, Bregs help mitigate excessive pro-inflamma-
tory responses, offering potential benefits for managing 
conditions such as allergies, asthma, and autoimmune 
diseases. This makes supporting Breg function espe-
cially important in elderly individuals, as it could help 
counteract the inflammatory imbalances characteristic 
of aging. Importantly, zinc levels significantly influence 
Breg production, with zinc deficiency leading to reduced 
Breg generation from purified B cells [381], (Fig.  6 and 
Table 10).

In the context of vaccination, zinc supplementation has 
shown promising effects, particularly in elderly popu-
lations. For instance, zinc treatment improved the IgG 
antibody reaction to the tetanus vaccine in older adults 

Fig. 6  B Cell Alterations in Aging and Zinc Deficiency. : Alterations due to aging, (Black) Alternations due to both, zinc deficiency and aging, (↑): 
increased, (↓): decreased Created in https://​BioRe​nder.​com

https://BioRender.com
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[16]. Furthermore, in a study on pneumococcal vaccina-
tion, elderly individuals with a stronger immune response 
had significantly higher serum zinc levels [382]. Con-
versely, elderly chronic hemodialysis patients who exhib-
ited an inadequate immune response to active diphtheria 
vaccination were found to have significantly lower serum 
zinc levels compared to those who responded effectively 
[383]. Zinc´s importance extends to prenatal health as 
well. Zinc deficiency during pregnancy has been found 
to impair offspring´s antibody response and T cell pro-
liferation following hepatitis B vaccination. Addition-
ally, maternal zinc deficiency suppresses the secretion of 
IFN-γ from splenocytes and reduces IFN-γ expression in 
both CD4+ and CD8+ T cells [384]. The timing of zinc 
supplementation is also critical for optimal vaccination 
outcomes. Research has shown that administering high 
doses of zinc concurrently with vaccination may result in 
suboptimal effects, whereas pre-vaccination zinc supple-
mentation offers more effective enhancement of the anti-
body response [16, 385–387].

More recent studies have identified a correlation 
between free zinc levels and the strength of antibody 
responses, including the potency of neutralizing anti-
bodies [388]. This connection is particularly significant 
given that antibody titers after vaccination decline more 
rapidly in the elderly [389], highlighting the potential role 
of zinc in supporting more robust and sustained immune 
responses in aging populations.

In studies of human B cells immortalized by Epstein-
Barr virus, alterations in zinc transporter expression 
were observed. Specifically, there was an increase in the 
endoplasmic-reticulum-to-cytoplasm Zip7 mRNA and 
protein expression as well as phosphorylation, leading 

to elevated intracellular free zinc levels. These changes, 
however, were not limited to immortalized cells. Similar 
elevations were noted in vitro in activated B cells marked 
with CD69, suggesting that both activation and prolif-
eration contribute to increased intracellular zinc [390]. 
Moreover, mutations in the Zip7 gene have been linked 
to a novel autosomal recessive disease characterized by 
agammaglobulinemia and early-onset infections, high-
lighting the crucial role of Zip7 in B cell development and 
immune function, as confirmed through CRISPR-Cas9 
mutagenesis in mice [44].

Age related diseases
As highlighted earlier, immunosenescence and inflam-
maging contribute significantly to an increased risk of 
infections, cancer, and autoimmune diseases in aging 
individuals. For example, people over the age of 65 repre-
sented more than 68% of new cancer cases in 2019 [402], 
and the incidence of Clostridium difficile infections was 
more than threefold higher among elderly individuals 
compared to younger adults [403].

Additionally, the interplay between COVID-19, aging, 
and zinc homeostasis has garnered considerable atten-
tion, given the heightened vulnerability of older adults 
to severe COVID-19 outcomes. In the U.S., over 75% of 
deaths due to COVID-19 occurred among individuals 
aged 65 and older, with more than 53% of these deaths 
occurring in those over 75 years of age [404]. Zinc plays 
a pivotal role in immune function, and its deficiency has 
been linked to worse outcomes in COVID-19 patients. 
Lower serum zinc levels have been shown to correlate 
with more severe symptoms, such as acute respiratory 

Table 10  Comparison of B cell counts and functions in aged individuals and zinc deficient state

ZD Zinc deficiency, ↓: decreased significantly; ↘: probably decreased; ↔ : no effect, or effect unclear, -: no data available, ↗: probably increased, ↑: increased 
significantly

Cell type Characteristics Alteration References

Elderly ZD Elderly ZD

B cells
Lymphopoiesis ↓ ↓  [347, 350] ↓  [219] ↓
Naïve B cells: Cell number ↘ ↓  [391] ↔ 

 [358] ↓
 [219] ↓
 [392] ↘

Memory B cells: Cell number ↗ -  [358] ↗
 [393] ↔ 

-

Bregs: cell number ↘ ↓  [394, 395] ↘  [381] ↓
Immunoglobulin class switch/AID ↓ ↓  [396] ↓  [368, 397] ↓
Serum IgG ↑ -  [398–400] ↑ -

Serum IgM ↘ -  [357, 400] ↘ -

Autoreactive antibodies ↑ -  [374] ↑ -

Vaccination response ↓ ↓  [371, 383, 401] ↓  [16, 382, 383, 
388] ↓
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distress syndrome (ARDS) and prolonged hospital stays 
[405, 406]. Furthermore, patients who did not receive 
zinc supplementation experienced longer recovery 
times, worse clinical presentations, and higher mortal-
ity rates compared to those who received supplemental 
zinc [407]. These findings underscore the critical role of 
zinc in modulating immune responses and mitigating the 
severity of COVID-19 in aging populations.

While the relationship between zinc and COVID-19 
has been extensively reviewed in the literature [408], this 
discussion will shift focus to other age-related diseases 
and the broader consequences of zinc deficiency, which 
is not only linked to immune dysfunction but also plays a 
significant role in other age-associated conditions, where 
immunological processes are not the sole contributors. 
These include a range of chronic, degenerative and meta-
bolic diseases, highlighting the indispensable role of zinc 
in supporting overall health and resilience during the 
aging process.

Age‑related macular degeneration
Age-related macular degeneration (AMD) is the primary 
cause of blindness among older adults in industrialized 
countries. In 2015, AMD affected approximately 67 mil-
lion individuals in Europe, with projections indicating 
an increase to 77 million by 2050 [409]. This acquired, 
degenerative condition is characterized by drusen depos-
its that interfere with the retinal pigment epithelium 
(RPE) and Bruch´s membrane, specifically affecting the 
macula, which is essential for central, detailed, and color 
vision [410]. AMD progresses in two main forms: the dry 
(non-vascular or early-stage) type, marked by drusen 
beneath the RPE, and the wet (neovascular or late-stage) 
type, characterized by choroidal neovascularization [411, 
412]. The prevalence of AMD increases markedly with 
age, demonstrating a pronounced disparity between 
older and younger populations. Among individuals aged 
64 years or younger, AMD is less common, with 9.3% 
exhibiting moderate signs. In contrast, this prevalence 
rises to 26.9% in those over 75 years, emphasizing the 
profound influence of aging on the progression of the 
condition [409].

While most AMD cases (90%) begin as the less aggres-
sive dry type, around 10% progress to the vision-threat-
ening wet form. However, no approved clinical therapy 
currently exists for dry AMD. Lifestyle changes such as 
avoiding smoking, following a healthy diet and taking 
antioxidant supplements are recommended. In contrast, 
wet AMD can be treated with anti- vascular endothelial 
growth factor (VEGF) antibodies to reduce neovascu-
larization [413, 414]. Given that aging is the leading risk 
factor, alongside family history and specific genetic pre-
dispositions, understanding AMD´s development and 

potential interventions is vital for protecting vision in 
aging populations [415].

Several genes related to the complement system, 
including the gene of complement factor H (CFH) [416], 
age-related maculopathy susceptibility 2 (ARMS2) [417], 
and others, have been identified as risk factor for AMD. 
SNPs in the CFH gene can elevate the risk of developing 
AMD by up to six times [418]. Expanding on this, com-
plement components C3 and C5 play a pivotal role in 
driving VEGF expression, a key factor in the angiogenesis 
characteristic of AMD [419]. Additional risk factors, such 
as, obesity, smoking, UV light exposure, and certain phys-
iological traits (e.g., high blood pressure, light-colored 
irises, female sex), exacerbate AMD through oxidative 
stress mechanisms [420]. The retina possesses the highest 
metabolic rate of any human tissue, with the production 
of ROS being an inherent aspect of its normal function. 
Research indicates that RPE cells from individuals with 
AMD exhibit elevated ROS levels and an increased sus-
ceptibility to oxidative stress compared to RPE cells from 
non-AMD donors [421]. Zinc plays a critical protective 
role in maintaining retinal health, particularly in the RPE. 
It mitigates H2O2-induced damage, enhances SOD activ-
ity [422], and activates the antioxidant response element 
(ARE)-Nrf2 pathway [423], thereby protecting RPE cells 
against elevated ROS levels.

Zinc levels in the neural retinal decline significantly 
with advanced age, whereas concentrations remain sta-
ble in the RPE [424] This decline is particularly relevant 
given that zinc is stored in key retinal cells, including 
ganglion, horizontal, amacrine, and Müller cells [425, 
426]. In AMD, RPE/choroid zinc levels are reduced by 
around 24% in humans, while zinc deposits are paradoxi-
cally high in drusen, possibly affecting CFH oligomeriza-
tion [427, 428].

Due to zinc depletion in AMD-affected RPE, dietary 
zinc supplementation is a promising intervention to 
prevent disease progression. Large-scale trials, notably 
AREDS and AREDS2, support zinc´s efficacy in slowing 
AMD progression, especially in combination with anti-
oxidants such as vitamins C and E and β-carotene [429–
431]. Studies such as the Rotterdam Eye Study and the 
Blue Mountains Eye Study also observed that increased 
dietary zinc intake was associated with a reduced risk 
of AMD [20, 432, 433]. However, zinc´s effectiveness 
appears to vary depending on genetic background, ben-
efiting CFH allele carriers in the Rotterdam Study [434] 
but also more significantly benefiting ARMS2 carriers in 
AREDS participants [435, 436].

Beyond AMD risk reduction, zinc´s role in the 
complement system is of particular interest, as zinc 
promotes CFH oligomerization and inactivation, 
potentially modulating inflammation in AMD [428]. 
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As part of the innate immune response, complement 
system dysregulation is implicated in AMD pathogen-
esis, with zinc able to bind CFH and other comple-
ment proteins to modulate inflammatory responses 
[437, 438]. Another important mediator, Zip7, facili-
tates zinc transfer from the endoplasmic reticulum to 
the cytoplasm within RPE cells, a process responsive to 
inflammatory cytokines such as IL-1β and TNF-α. By 
regulating barrier dysfunction in the RPE, Zip 7 may 
influence AMD pathogenesis, as shown by the protec-
tive effects of inhibiting Zip7-mediated zinc movement 
against these cytokines [439].

Additionally, AMD´s pathogenesis involves the loss 
of RPE-derived VEGF signaling and defenestration of 
usually high permeable choriocapillaries in atrophied 
RPE areas, which disrupts retinal permeability [440, 
441]. Zinc supplementation has shown potential in 
restoring these retinal fenestrations by promoting the 
redistribution of plasmalemmal vesicle associated pro-
tein-1 (PV-1), facilitating nutrient and waste exchange 
and improving retinal health in AMD [442].

In sum, zinc is a vital component in both preven-
tive and therapeutic strategies for AMD, especially for 
aging populations who are at increased risk. Through 
its multifaceted effects, such as antioxidant properties, 

inflammatory modulation, genetic interactions, and 
RPE function support, zinc supplementation presents 
a low-cost, accessible option to slow AMD progression 
and help maintain vision quality in elderly individuals 
Figure 7.

Atherosclerosis
Atherosclerosis it a pathological condition characterized 
by the buildup of plaque, composed of fats, cholesterol, 
calcium and other substances, within the intima of large 
and medium-sized arteries- This process begins with 
the activation of endothelial cells, setting off a cascade 
that leads to vessel narrowing, activation of inflamma-
tory pathways, and ultimately, formation of atheroma-
tous plaques [443]. Atherosclerosis serves as the primary 
pathological mechanism behind most cardiovascular 
disease (CVD) cases, a leading global health concern and 
one of the top causes of disability and premature death 
[444, 445].

Importantly, atherosclerosis can begin early in life 
and often progresses silently over decades before symp-
toms emerge [446]. The prevalence of CVD rises sharply 
with age, affecting approximately 38% of individuals 
between 40 and 60 and reaching 83% in those over 85. 
Increased age is associated with conditions like elevated 

Fig. 7  Impact of Zinc Deficiency on Atherosclerosis and Cardiovascular Health Zinc deficiency contributes to dysregulated lipid metabolism, 
glucose metabolism, elevated blood pressure and endothelial dysfunction. Together, these effects heighten the risk of atherosclerosis 
and metabolic disorders in zinc-deficient individuals. (↑): Characteristic increased, (↓): Characteristic decreased Created in https://​BioRe​nder.​com

https://BioRender.com
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carotid intima-media thickness, carotid plaque, and 
carotid stenosis, which occur more frequently in older 
adults, compounding their CVD risk [447]. Given the 
rising prevalence of AS in elderly populations, the bur-
den it places on personal health and healthcare systems 
presents a significant public health challenge requiring 
immediate attention.

Emerging evidence points to the critical role of zinc in 
modifying multiple risk factors associated with AS, par-
ticularly in older adults. Zinc impacts lipid metabolism, 
glucose metabolism, and blood pressure regulation, mak-
ing it a promising therapeutic agent against AS (Fig. 7). 
Zinc-α2-glycoprotein (ZAG) is a glycoprotein with a 
zinc-binding site that plays a pivotal role in lipid metabo-
lism. It promotes lipolysis through the cAMP signaling 
pathway [448] and enhances energy metabolism in brown 
adipose tissue by stimulating PPARγ and early B cell fac-
tor 2 (EBF2) [449]. Serum ZAG concentration declines 
progressively with age, showing an inverse correlation 
with fasting blood glucose and triglyceride levels, while 
higher body mass index (BMI) is also negatively associ-
ated with ZAG levels [450]. Furthermore, serum zinc 
concentrations are significantly lower in obese patients, 
with obesity being a major risk factor for CVD [451]. 
Zinc has been shown to correct lipid abnormalities in 
higher-fat diet models, lowering liver enzymes, including 
aspartate aminotransferase (AST) and alanine transferase 
(ALT), associated with liver stress [452]. The beneficial 
effects of zinc on lipid metabolism extend to improved 
cardiovascular outcomes. Zinc supplementation has 
been shown to significantly reduce total cholesterol (TC), 
increase high-density lipoprotein cholesterol (HDL-C) in 
individuals with underlying health conditions, and lower 
low-density lipoprotein cholesterol (LDL-C) and triglyc-
eride levels, as demonstrated in a meta-analysis [453]. 
Additionally, studies assessing the TC to high-density 
lipoprotein cholesterol (TC/HDL-C) ratio, a recognized 
marker of CVD risk, indicate that zinc supplementation 
reduces this ratio, further highlighting its protective role 
in cardiovascular health [454].

Zinc also plays a protective role against atherosclerosis 
through its impact on glucose metabolism. Supplementa-
tion with zinc has been shown to reduce fasting glucose 
levels and HbA1c [455]. Additional effects of zinc on glu-
cose metabolism will be explored in the diabetes mellitus 
section of this review.

Studies have demonstrated a negative association 
between serum zinc levels and high blood pressure [456]. 
Moreover, zinc supplementation has been shown to 
reduce systolic blood pressure, highlighting its potential 
therapeutic role in managing hypertension [457]. One 
critical organ for blood pressure regulation is the kid-
ney, which is highly sensitive to zinc deficiency. In zinc 

deficient rats, kidney functions are compromised due to 
structural abnormalities, including reduced number of 
nephrons and renal fibrosis, and functional impairments, 
such as reduced glomerular filtration rate and proteinuria 
[458]. Notably, zinc plays a protective role at the cellular 
level, as it has been shown to significantly inhibit apop-
tosis in ATP-depleted renal cells [459]. Zinc-deficient 
rats also exhibited elevated levels of angiotensin II, along 
with augmented expression of angiotensin-converting 
enzyme 1 (ACE1) and the angiotensin receptors AT1 and 
AT2 at both the mRNA and protein levels. These changes 
enhance the activity of the renin-angiotensin system 
(RAAS), contributing to vasoconstriction, sodium reten-
tion, and heightened blood pressure, thereby exacerbat-
ing the risk of hypertension [460]. Further compounding 
the issue, zinc deficiency has been shown to upregulate 
the renal Na-Cl cotransporter, which increases sodium 
retention and further elevates blood pressure [461].

Endothelial cells (ECs) are central to the pathogen-
esis of atherosclerosis. Endothelial cell dysfunction, a 
key event, is associated with changes in hemodynamic 
forces. Areas of low shear stress trigger proatherogenic 
responses such as increased permeability, production of 
ROS, activation of NF-κB, and upregulation of adhesion 
molecules that attract leukocytes [462].

Zinc plays a critical role in maintaining endothelial 
health by supporting nitric oxide synthesis through the 
activation of endothelial nitric oxide synthase (eNOS), 
which is essential for vascular relaxation and anti-athero-
genic effects [463]. The enzymatic activity of eNOS relies 
on its dimeric configuration, which is essential for its 
proper function. This dimeric state is stabilized by a zinc 
ion, playing a crucial role in maintaining the structural 
integrity and interaction of the two monomers [464]. The 
removal of zinc causes eNOS dimers to dissociate into 
inactive monomers in endothelial cells [465]. Hence, zinc 
supplementation increases intracellular NO production 
[466].

Moreover, Zinc deficiency enhances NF-κB activa-
tion, fueling inflammatory responses [467]. This pro-
inflammatory state is further exacerbated by the reduced 
expression of PPARα and PPARγ in zinc-deficient 
endothelial cells, as these receptors are crucial inhibi-
tors of NF-κB signaling, underlining zinc’s vital role in 
preventing sustained inflammation [19]. Supplementa-
tion with zinc markedly reduces the binding activity 
of transcription factors NF-κB and AP-1, which in turn 
results in a significant decrease in the production of the 
pro-inflammatory cytokine IL-8 in endothelial cells [468]. 
Additionally, the hypoxia-inducible factor-1 (HIF-1) acts 
as a pivotal regulator during hypoxic and ischemic con-
ditions, playing a key role in promoting cell survival and 
driving the production of pro-inflammatory cytokines. 
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These actions contribute to critical processes such as 
angiogenesis and vascular remodeling [469]. Zinc has 
been shown to inhibit HIF-1α, impair its heterodimer 
formation and enhance its degradation via the proteaso-
mal pathway [470].

Furthermore, a deficiency in zinc markedly impairs 
the barrier function of porcine endothelial cells [471], 
making them more prone to leukocyte infiltration 
and facilitating inflammatory processes [472]. Low 
zinc levels heighten endothelial cell vulnerability to 
LPS-induced apoptosis, whereas higher intracellular 
zinc supports defenses against apoptosis, possibly via 
nitric oxide pathways [473]. In addition, zinc-deficient 
endothelial cells exhibit increased caspase-3 activation, 
leading to higher rates of cell death, an effect reversible 
by zinc supplementation [474].

In atherosclerosis, endothelial cells produce 
chemokines, cytokines, and adhesion molecules that 
attract monocytes, leading to leukocyte migration into 
the vascular wall. Zinc deficiency exacerbates these 
processes by upregulating molecules like vascular cell 
adhesion molecule-1 (VCAM-1) and intercellular 
adhesion molecule-1 (ICAM-1), facilitating monocyte 
attachment and intensifying vascular inflammation and 
AS progression [475, 476].

Human studies support these findings: A randomized 
controlled trial demonstrated that a six-month zinc 
supplementation regimen in older adults increased 
plasma zinc levels and decreased markers of inflam-
mation, including high-sensitivity C-reactive protein, 
IL-6, MCP-1, and VCAM-1. These findings suggest 
that addressing zinc deficiency in older populations 
may alleviate systemic inflammation and oxidative 
stress, thereby reducing the risk of atherosclerosis and 
improving cardiovascular outcomes [477].

Epidemiological studies have identified an inverse 
relationship between serum zinc levels and the risk of 
coronary artery disease (CAD) [478]. A meta-analysis 
further demonstrates that patients with heart failure 
have significantly lower serum zinc levels compared to 
healthy controls, with individuals diagnosed with idi-
opathic dilated cardiomyopathy exhibiting particularly 
reduced zinc concentrations [479]. Additionally, a sig-
nificant inverse correlation has been observed between 
serum zinc levels and left ventricular mass, a marker of 
left ventricular hypertrophy [480]. Healthy individuals 
show higher serum zinc levels than those diagnosed 
with atherosclerosis or unstable angina [481, 482]. Fur-
thermore, increased dietary zinc intake has been linked 
to a lower risk of coronary artery calcium progression, 
a known marker of subclinical atherosclerosis, particu-
larly when the zinc is sourced from non-red meat [483]. 
Conversely, zinc intake from red meat sources has been 

positively associated with a higher risk of CVD [484]. 
Lastly, individuals who have suffered myocardial infarc-
tion were found to have significantly reduced zinc lev-
els in both serum and hair samples [485].

This leads to the conclusion that zinc´s essential role in 
endothelial function, its modulation of inflammatory and 
oxidative stress pathway, and its impact on atherosclero-
sis progression position it as a vital nutrient for cardio-
vascular health in aging populations.

Depression
Depression is one of the most prevalent mental health 
disorders worldwide, affecting approximately 280 million 
people [486]. Major Depressive Disorder (MDD) specifi-
cally has an alarming presence across age groups, with a 
12-month prevalence of 10.4% and a lifetime prevalence 
of 20.6% [487]. MDD ranks among the top five disa-
bling disorders globally [488], leading not only to mental 
health challenges but also to serious physical health risks, 
such as cardiovascular disease, stroke, and metabolic dis-
orders [489, 490]. For aging populations, MDD presents 
an even greater concern, as it significantly raises the risk 
of Alzheimer´s disease, dementia, frailty, and reduced 
health span, underlining its multifaceted burden on both 
mental and physical health in older adults [491–493]. 
Around 22.1% of older adults with mild dementia and 
11.6% of those with moderate dementia also experience 
major depressive disorder [494].

The implications of MDD on mortality are profound, 
with affected individuals facing increased risks of death 
from all causes, particularly cardiovascular mortality 
[489, 495]. Moreover, MDD has been linked to character-
istics commonly associated with aging, suggesting that it 
may contribute to a premature aging phenotype, particu-
larly in older adults who are already at heightened risk 
[489, 495].

Treatment for depression is typically stratified by 
severity, with mild depression managed through psych-
oeducation, self-care, and psychotherapy, while moder-
ate to severe depression often requires a combination 
of psychotherapy and antidepressant medications [496]. 
Antidepressants remain a cornerstone of treatment, 
demonstrating clear benefits in reducing depressive 
symptoms compared to placebo [497]. However, the ris-
ing prevalence of depression in the general population 
is coupled with an increasing number of patients who 
do not respond to antidepressant therapy, underlining 
the need to identify underlying factors to enable early 
detection and intervention, especially in high-risk groups 
[498].

Research shows that low dietary zinc intake is linked 
to an elevated risk of depression [23, 499, 500]. Patients 
with major depression frequently exhibit lower serum 



Page 26 of 44Schulz and Rink ﻿Immunity & Ageing           (2025) 22:19 

zinc levels than healthy controls [501, 502] and a positive 
correlation exists between zinc deficiency and depression 
severity as these studies show among female students, 
postmenopausal women, and hemodialysis patients 
[503–505]. Studies with human subjects have shown that 
dietary or supplemental zinc interventions have antide-
pressant-like effects and improve mood [506–508].

Depression has been partly linked to inflammation, as 
evidenced by the role of proinflammatory cytokines like 
IL-1β in its development [509]. Zinc deficiency promotes 
the production of IL-1β by increasing the accessibility of 
the IL-1β promoter, which possibly results in a consti-
tutive IL-1β production even in the absence of danger 
signals. Zinc repletion reduces promoter accessibility, 
thereby limiting IL-1β production under basal condi-
tions, although it can still be induced by stimuli (danger 
signals) such as LPS [510]. This mechanism may contrib-
ute to an elevated risk of depression.

Furthermore, patients with major depression show 
a reduced number of Tregs in their peripheral blood, a 
characteristic also associated with inflammatory diseases 
[511]. Both antidepressant therapy [512] and zinc supple-
mentation [327] have been found to reduce IL-1β expres-
sion and increase Treg levels. Similarly, both treatments 
lower the production of IFN-γ, further emphasizing their 
shared anti-inflammatory effects [327, 513].

Beyond its role in inflammation-related mechanisms 
contributing to depression, zinc also influences depres-
sion through other pathways. The G protein-coupled 
receptor 39 (GPR39) is responsive to zinc levels, and its 
activation influences pathways involved in depression 
[26, 514]. Zinc-deficient animals have been shown to 
exhibit reduced GPR39 expression in brain areas such 
as the hippocampus and frontal cortex, similar to obser-
vations in humans with depressive symptoms who died 
by suicide [515]. Mice lacking GPR39 display behaviors, 
seen in depression and anxiety, accompanied by com-
promised muscle coordination. Furthermore, these mice 
exhibited an altered expression of the Cl− transporter 
KCC2 in the amygdala, which influences GABAergic sig-
nal pathways [516].

The influence of zinc on depression is further under-
lined by its role in regulating zinc transporter pro-
teins. Studies of stress-induced depression models have 
revealed lower total zinc levels, accompanied by reduced 
expression of ZnT1 in the prefrontal cortex and hip-
pocampus, as well as ZnT3 in the hippocampus [517, 
518].

Depression-like behaviors resulting from zinc defi-
ciency are associated with heightened hippocam-
pal expression of the N-methyl-D-aspartate receptor 
(NMDAR), and lowered α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor (AMPAR) expression. 

Effects that can partially be reversed with fluoxetine 
treatment [519, 520].

These findings underline the importance of dietary 
zinc intake, particularly for aging populations who are at 
higher risk of both zinc deficiency and depression-related 
cognitive decline. Evidence from human studies suggests 
that dietary or supplemental zinc can have antidepres-
sant effects, providing a promising adjunctive treatment 
approach for individuals who do not fully respond to 
conventional antidepressant therapy [506–508]. Recog-
nizing zinc´s potential to support mental health, particu-
larly in older adults, can guide treatment strategies aimed 
at improving both psychological and physiological out-
comes in populations vulnerable to accelerated aging and 
mental health challenges associated with depression.

Wound healing
Elderly individuals are more susceptible to chronic 
wound, such as diabetic and pressure ulcers, often exac-
erbated by age-related declines in wound healing linked 
to aging immune system [521, 522]. Research highlights 
that essential reparative functions, including angiogen-
esis, fibroblast activity, and collagen deposition, are com-
promised in older adults. This delayed wound closure 
not only increases infection risks but also extends hospi-
tal stays, imposing added strain on healthcare resources 
[523, 524]. As wound healing is essential to tissue integ-
rity and overall health, the care and management of 
chronic wounds in aging populations have become a crit-
ical public health concern, annual cost of treating chronic 
wounds, including various ulcers, are estimated to reach 
up to $96 billion in the U.S. alone [525].

The skin holds a relatively high concentration of zinc, 
which constitutes about 6% of the body´s total zinc con-
tent and is mainly concentrated in the skin´s epidermis. 
This zinc is especially significant in the wound healing 
process [526]. During the wound healing process, ini-
tial hemostasis is established through the aggregation 
of platelets and the formation of a clot, which is subse-
quently stabilized by the secretion and polymerization of 
fibrin [527]. Studies involving both rats and humans dem-
onstrated that dietary zinc deficiency leads to impaired 
platelet aggregation [528, 529]. Zinc plays a crucial role 
in facilitating platelet aggregation by interacting with 
the fibrinogen receptor glycoprotein IIb/IIIa complex, 
enhancing the response synergistically when combined 
with collagen or ADP [530, 531].

In the inflammatory phase, a critical step in wound 
healing, zinc levels increase significantly. Rat model 
studies demonstrate rise of about 15% in zinc within 
24 h post-injury at the wound margins, followed by an 
increase of up to 30% during the formation of granulation 
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tissue and epidermal proliferation [532, 533]. This zinc 
signal initiates the repair process in epithelial cells [534].

Once inflammation subsides, re-epithelialization 
begins, typically around 2–3 days after injury, as fibro-
blasts infiltrate the wound site, initiating collagen and 
extracellular matrix (ECM) deposition to create a scaf-
fold for tissue repair. This matrix serves a foundation sup-
porting the migration of epithelial cells, keratinocytes, 
and microvascular structures [535]. The TGF-β/SMAD 
pathway, which zinc supports as an essential cofac-
tor, regulates ECM deposition, aiding granulation tissue 
formation [325]. Additionally, zinc-dependent matrix 
metalloproteinases (MMPs) are involved in depredating 
granulation tissue to enable migration of keratinocytes, 
fibroblasts, and endothelial cells, promoting cell growth, 
migration, and angiogenesis [536]. Both zinc and cal-
cium are essential for the efficient functioning of MMPs 
in vitro [537, 538].

Clinical evidence suggests that zinc deficiency can 
impair wound healing as low serum zinc levels correlate 
with poor healing outcomes, including infection and 
dehiscence in patients undergoing hip replacement sur-
geries [22]. Chronic leg ulcer patients commonly present 
with zinc metabolism irregularities, leading to low serum 
zinc levels [539–541]. Studies have shown that topical 
zinc application can enhance wound repair, as demon-
strated in porcine skin wound models where zinc accel-
erated re-epithelization [542] and increased keratinocyte 
migration, contributing to epidermal re-epithelization 
[543]. Zinc oxide, specifically, has been effective in ulcer 
healing, performing comparably to enzymatic debriding 
agents for pressure ulcers [544–546] and demonstrat-
ing effectiveness in diabetic foot ulcers by promoting 
debridement through zinc oxide-medicated occlusive 
dressings, outperforming standard hydrocolloid dress-
ings that utilize autodebridement [547]. In a study com-
paring topical zinc treatments with saline controls in 
patients with uncomplicated wounds, those treated with 
zinc showed significantly better healing outcomes [548].

Zinc oxide also aids in collagen degradation in neurotic 
wounds, which is beneficial in cases of tissue damage 
requiring necrotic tissue breakdown for effective healing 
[538]. Nutritional interventions have also shown benefits. 

For example, a high-calorie, high-protein oral formula 
fortified with zinc and other nutrients led to significant 
ulcer reduction in malnourished patients with chronic 
pressure ulcers, although zinc´s exact role within the for-
mula remains uncertain [549]. In surgical settings, zinc 
infusions administered pre- and post-operatively in vas-
cular surgery patients prevented the typical postopera-
tive drop in serum zinc levels, resulting in a reduction in 
wound healing complications compared to the placebo 
group [550].

However, studies on systemic zinc supplementation 
present mixed results. For instance, a systemic review 
indicated that zinc sulfate did not significantly aid in 
treating leg ulcers unless zinc deficiency was evident 
[551]. In contrast, another study found general poor 
dietary zinc intake among patients with leg ulcers [552]. 
Topical zinc therapy, however showed improved healing 
in chronic venous leg ulcers in a meta-analysis [553].

In summary, zinc plays a multifaceted role in wound 
healing, making it a critical component of wound care 
for elderly individuals. From enhancing hemostasis and 
inflammation to promoting re-epithelization and ECM 
remodeling, zinc´s physiological functions support each 
phase of the wound healing process. For the aging popu-
lation, which is at higher risk of delayed wound healing 
and associated complications, zinc-based treatments, 
particularly topical applications, offer promising thera-
peutic options, though the effectiveness of systemic sup-
plementation remains context-dependent Figure 8.

Diabetes mellitus
Diabetes mellitus is a chronic metabolic disorder marked 
by elevated blood glucose levels, or hyperglycemia, and 
increased glycated hemoglobin, sometimes accompa-
nied by glycosuria [554, 555]. This condition results from 
disruption in glucose metabolism, often stemming from 
insufficient insulin production by the pancreas, reduced 
in insulin effectiveness in body tissues (insulin resist-
ance), or a combination of these factors, which is par-
ticularly common among older adults [556]. Prolonged 
hyperglycemia can lead to progressive complications, 
damaging vital organs such as the heart, blood vessels, 
eyes, kidneys, and nerves, underscoring the need for 

Fig. 8  Impact of Zinc on Insulin Secretion, β-Cell Health, and Insulin Signaling (↑): increased, (↓): decreased, () activation, (–I): inhibition (a) Zinc 
transporter 8 (ZnT8) facilitates zinc storage in insulin granules within pancreatic β-cells, playing a critical role in insulin storage. Aging and zinc 
deficiency increase IL-1, exacerbating IL-1-mediated activation of the NF-κB pathway, which leads to increased apoptosis β-cells. b Zinc plays 
a modulatory role in insulin signaling pathways in target tissues such as adipocytes and myocytes. Zinc inhibits protein tyrosine phosphatase 1B 
(PTP1B) activity, enhancing insulin receptor signaling through IRS and PI3 K pathways. This supports Akt/PKB activation, promoting downstream 
effects such as increased glucose uptake via GLUT4 translocation, enhanced glycogen synthesis (via inhibition of GSK3), reduced gluconeogenesis 
(via FOXO1 suppression), and increased protein synthesis (via S6 K activation). Created in https://​BioRe​nder.​com

(See figure on next page.)

https://BioRender.com
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Fig. 8  (See legend on previous page.)
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targeted management of diabetes in older populations to 
prevent these outcomes [556].

Diabetes ranks as the fifth leading cause of death glob-
ally, responsible for approximately 1.6 million fatali-
ties per year [557, 558], and accounted for 11.3% of all 
global deaths in 2019 [559]. Type 2 diabetes, in particu-
lar, has seen a continuous increase in prevalence, driven 
by lifestyle shifts and population aging, especially in 
Westernized societies, where these factors contribute to 
rising obesity rates. Among those aged 70 and above, the 
prevalence of diabetes is notably high, affecting around 
25–30% of this demographic group [560, 561].

In pancreatic β-cells, the highest concentration of zinc 
is in insulin secretory granules, where it plays a vital 
role in insulin stability and secretion. Insulin binds with 
zinc ions to form hexamers, which allow dense packing 
of insulin in storage vesicles, protecting it from degra-
dation [50, 562]. The zinc transporter ZnT8 is essential 
for moving zinc into pancreatic β-cell granules, facilitat-
ing zinc-insulin hexamer formation, critical for efficient 
insulin release. Zinc deficiency can reduce ZnT8 expres-
sion, thereby hindering insulin secretion [563–565]. Sin-
gle nucleotide polymorphisms (SNPs) as the rs13266634 
SNP in the ZnT8 gene and is associated with an increased 
risk of developing type 2 diabetes [566] The risk of devel-
oping type 2 diabetes with this SNP can be lowered with 
zinc supplementati[on [567].

Inflammaging plays a critical role in the pathogenesis 
of diabetes and the destruction of pancreatic β cells as 
well. A key contributor to this process is the pro-inflam-
matory cytokine IL-1β, which is significantly elevated in 
aging individuals [568]. IL-1β inhibits insulin release and 
processing of proinsulin into insulin, impairing glucose 
metabolism [569]. Furthermore, IL-1β induces apoptosis 
in pancreatic β cells through the activation of the NF-κB 
pathway, exacerbating β cell loss [570]. The potential to 
counteract these effects has been demonstrated with IL-1 
receptor antagonists, which have been shown to improve 
glucose tolerance and enhance insulin production [571]. 
Zinc supplementation offers a promising way to mitigate 
these effects, as it has been shown to reduce symptoms 
of inflammaging and lower IL-1β release. Ex vivo studies 
reveal that zinc supplementation can decrease IL-1β out-
put following LPS stimulation [572, 573]. These findings 
suggest that zinc may help reducing the risk of diabetes 
mellitus in aging populations by protecting β cells from 
apoptosis.

The insulin signaling pathway, critical for glucose regu-
lation, begins with insulin binding to its receptor, which 
activates insulin receptor substrates (IRS) and recruits 
phosphoinositide 3-kinase (PI3 K), which turns phos-
phatidylinositol-4,5-bisphosphate (PIP2) into phosphati-
dylinositol-3,4,5-trisphosphat (PIP3). PIP3 then activates 

Akt (Protein Kinase B), initiating various metabolic pro-
cesses: GLUT4 translocates to the cell membrane to facil-
itate glucose uptake, glycogen synthase kinase 3 (GSK3) 
is inhibited to promote glycogen synthesis, and FOXO1 
is phosphorylated, which reduces gluconeogenesis. Addi-
tionally, Akt activates ribosomal protein S6 K, enhanc-
ing protein synthesis and supporting cellular growth and 
metabolism. Phosphatases, such as PTEN and PTP1B, 
regulate this pathway by deactivating signals, thereby 
maintaining balance in glucose and metabolic activity 
[574].

Zinc is a crucial element in activating the PI3 K/Akt 
pathway (Fig. 8), which is vital for effective insulin sign-
aling [575]. Research indicates that zinc independently 
stimulates the activation of insulin receptor β, AKT, 
ERK1/2 and Src homology-2 domain-containing protein 
tyrosine phosphatase (SHP) in myotubes, promoting glu-
cose uptake via GLUT4 translocation in the cell mem-
brane [575, 576]. Inhibition of the insulin receptor in C2 
C12 skeletal muscle cells reduces zinc-induced Akt acti-
vation, suggesting that zinc may exert its effects through 
insulin receptor interaction [575], more exactly by 
enhancing the phosphorylation of the insulin receptor´s 
β-subunit [577, 578].

Zinc is also inhibits the enzyme tyrosine phosphatase 
1B (PTP1B), which would otherwise reduce the insulin 
signal by dephosphorylating the β-subunit of the insulin 
receptor [579]. Zinc also inhibits the phosphatase and 
tensin homolog (PTEN), which normally dephospho-
rylates PIP3, thereby suppressing the activation of Akt. 
Through PTEN inhibition, zinc promotes the further 
activation of Akt signaling [580, 581]. This elevated insu-
lin signaling through zinc causes more GLUT4 trans-
porters to move to the cell membrane, increasing glucose 
uptake into cells [576]. It also enhances the phosphoryla-
tion of forkhead box protein O1 (FOXO1), which sup-
presses gluconeogenesis [582]. Additionally, it activates 
S6 K, boosting protein synthesis [583], and inhibits GSK3 
through phosphorylation, leading to greater glycogen 
synthesis [584]. GSK3 is also directly inhibited by zinc 
[585]. Furthermore, zinc inhibits PP2 A, which otherwise 
would inhibit Akt and S6 K [230, 586].

Diabetic individuals, especially older adults, often 
exhibit lower serum zinc levels than healthy controls. 
Low zinc levels are associated with higher fasting blood 
sugar and HbA1c levels, indicating poorer glycemic con-
trol in type 2 diabetes mellitus [587–589]. Zinc deficiency 
correlates with the severity of diabetic complications, 
including peripheral neuropathy. In case–control study, 
diabetic patients with peripheral neuropathy had lower 
serum zinc levels, and zinc levels were negatively corre-
lated with HbA1c, neuropathy scores (NSC and MNSI), 
and nerve conduction [590]. Zinc supplementation 
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has shown promising effects in improving neuropathic 
symptoms. Patients with neuropathy treated with zinc 
sulfate showed significant improvements in fasting and 
postprandial blood glucose and motor nerve conduction 
velocity compared to the placebo group [591, 592]. Addi-
tionally, zinc supplementation may reduce the risk of dia-
betic nephropathy complications [593].

Studies also indicate that zinc supplementation in type 
2 diabetes mellitus patients can reduce fasting blood glu-
cose, HbA1c, and lipid profiles, including TC and LDL-
C, while increasing HDL-C, highlighting its potential as 
a beneficial adjunct therapy for older adults with diabetes 
[455, 594, 595].

Given the significant prevalence of diabetes among 
older adults, zinc supplementation offers an accessible 
strategy to improve glycemic control, mitigate complica-
tions, and enhance overall health and quality of life in this 
vulnerable population.

Conclusion
In conclusion, zinc is a crucial nutrient that supports 
immune health and reduces inflammation in older adults, 
providing valuable protection against age-related dis-
eases. Zinc plays multiple roles in the immune system 
by strengthening the activity of various immune cells, 
including granulocytes, NK cells, macrophages, T cells, 
and B cells. As we age, immune function often weakens, 
leading to a higher risk of infections, chronic low-level 
inflammation, and reduced cellular function, challenges 
that zinc can help address through targeted support of 
these immune cells.

Zinc supports healthy cell function, which helps lower 
the risk of cancer and infections, reduces age-related 
inflammation/inflammaging, and boosts Treg activ-
ity, thereby decreasing the likelihood of autoimmune 
diseases. Zinc’s role in reducing oxidative stress and 
modulating inflammatory pathways further suggests 
its potential to delay or reduce the progression of spe-
cific age-related diseases, including age-related macu-
lar degeneration, diabetes, depression, atherosclerosis, 
and impaired wound healing. In the case of AMD, zinc 
is integral in combating oxidative damage in retinal cells, 
thereby slowing the disease’s progression and preserving 
vision. For diabetes, zinc’s involvement in glucose metab-
olism and insulin regulation can help reduce inflamma-
tory markers associated with the disease, potentially 
aiding in glycemic control and protecting against diabe-
tes-related complications. In the context of depression, 
zinc’s anti-inflammatory and neuroprotective effects 
show promise in managing age-related mental health 
challenges by reducing inflammation that may contribute 
to mood disorders. Atherosclerosis, a condition driven 

by chronic inflammation in blood vessels, may also be 
mitigated by zinc’s anti-inflammatory actions, supporting 
cardiovascular health by reducing the buildup of plaques 
in arterial walls. Additionally, zinc plays a role in collagen 
synthesis and cellular repair, which is critical in improv-
ing wound healing, a process that often becomes com-
promised with age.

This review underlines the essential nature of maintain-
ing adequate zinc levels in promoting immune health, 
resilience, and reducing the risk of chronic conditions in 
older adults. Considering its low cost, safety, and acces-
sibility, zinc presents itself as a valuable intervention 
to support healthy aging and improve quality of life. By 
targeting both cellular health and inflammation, zinc 
addresses multiple facets of immunosenescence, mak-
ing it a key component in comprehensive strategies to 
enhance immunity, delay age-related diseases, and bol-
ster overall well-being in elderly populations.
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